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FOREWORD

This 1is the final report on.- the Guidance/Navigation Requirements Study
(G/NRS), which was performed for SAMSO, Air Force Systems Command, USAF,
under contract F04701-75-C-0112 by Logicon, Inc. The study was initiated
in May of 1975 and completed in April of 1978,

General G/NRS objectives were twofold:

1) To develop and maintain performance models for both flight
test and operational versions of an Air Force Maneuvering
Reentry Vehicle,

2) To use these models to assist the Air Force in establishing
G/N subsystem requirements and options for a flight test
vehicle and investigate the performance of an operational
Marv.,

i e

This report is segmented into three volumes. Volume ! presents an over-
view of the reentry system performance analysis problem and summarizes the
results of the entire effort. Volume II corroborates the summary pre-
sented in Volume [ with documentation of the detailed analysis performed
during the course of the study. VYolume 1II contains appendices which des-
cribe in detail the salient analysis techniques employed during the study. |
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APPENDIX A
IMU PERFORMANCE MODELING AND EVALUATION

. A mathematical description of the errors inherent in utilizing

b a sensor capable of measuring the non-gravitational acceleration in a

b | navigation system is described in this appendix, The discussion 1s divided
into three segments. The first pertains to the errors in the navigated
state produced by a general acceleration measurement error. The second seg-
p ment discusses the sources of the error in the measured acceleration. The

i third segment addresses statistical processing of the calculated navigation
error to obtain deployment errors, target miss, etc.

A-1. NAVIGATED STATE ERRORS

A 1inear analysis of the navigation errors associated with in-
i accurate acceleration measurement considers the following differential

! equation involving the navigated state:
|
2 S g (F) eF (A-1)
at?
where

Iy is the acceleration sensed by the navigation system
g(r) is the gravitational acceleration ! |
¥ is the position component of the naviyated state. ! |

To obtain an equation relating small errors in the acceleration
terms to position errors, let

i
' |
!
|

5P = 5P + &7

FaFy o+ oF (A-2) |

A-1
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where
FN‘
‘ 3 are the nominal position and acceleration (measured
i »
: _ﬂ _ { and gravitational) along the phase space profile
- §F, l
L §i are perturbations in position and acceleration. k
b 2! b
; §g(¥) !
b Substituting (A-2) into (A-1), expanding and rearranging: %
(?N - gytr) - EN> + 87 - OF » VS(F) = Sg(F) + 8a
(A-3) '
. Products of perturbations have been ignored. Note that the parenthetical 3
| term in Equation A-=3 is the differential equation describing the profile, 1

and 1s therefora zero.

Considering a spherical earth gravitation field for the g(r)
term, Equation A-3 becomes

2 oM e 3TN ST T+ 555
3¢ + .l.:-‘-a. Sr - ———l:—-|-2—- I‘N s 83 + Sg(l‘) (A‘4)
r r
N

This differential equation which relates the error in the navigated position
to errors in the measured and gravitational acceleration can be numerically
solved to obtain the navigation system errors,

The forcing functions (sa and §g(r)) represent the errors inher-
ent in the measurement of the inflight acceleration and the computation
of the gravitational acceleration.

The Solution tc Equation A-4 yields the position error
associated with an acceleration measurement error. If the velocity !
error is also desired, two first-order equations can be tormulated

A-2
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from £quation A-4 by the substitution &V = 3r. The two resulting equations
can be solved and §V and v determined.

; A-2. ACCELERATION MEASUREMENT ERRORS

The errors in the acceleration measured by the navigation sensing
f unit are discussed in this section. The section {s segmented into three
sagments, each of which describes a different source of the acceleration

5 measurement error, The first segment discusses the measurement errors
i associated with the accelerometers, which measure the non-gravitational
a* acceleration along their sensitive axis., The second segment formulates

the effect that gyro errors have on determining the orientation of the
accelerometer sensitive axes relative to a known computational frame.
The third segment demonstrates some of the effects structural compliance
has on the transformation of the measured acceleration in accelerometer
coordinates to navigation computation coordinates.

f A-2.1 ACCELEROMETER ERRORS

The errors inherent in the actual measurement of the non- 1
gravitational acceleration are modeled as an acceleration error along
each of the accelerometer sensitive axes., This error is then transformed
into computational coordinates utilizing the accelerometer to navigation
frame transformation which describes the geometry and orientation of
the accelerometer cluster. This transformed error can then be handled
as described in Section A-l.

A e D kil

The equation performing the above is
. ; Su
834

e et testmn

where
GIN = acceleration error in navigation coordinates
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[ATN] = accelerometer to navigation transformation (may be
time-varying)

a, = magnitude of the acceleration error for the ith
accelerometer

613 = Kronecker delta function

The acceleration error magnitude may be from several sources including
bias errors, scale factor errors, misalignments and quantization.

For example, if a particular orthogonal accelerometer cluster
was inertially held and the accelerometer errors were modeled as bias
and scale factor errors, the modeling equations would be:

bx
[ATN] | ©

i 0

i 63"2 [ATN] ( y
|

On

]
] [
o o

[=]

9
ojz
[]
NN
o o o
ﬁL\___’,r N—”’
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where

By» bys b are the bias errors
Sx» Sy» S are the scale factor errors

a,a,a are the acceleration components along the :
accelerometer sensitive axis of the x, y, [
and 2 accelerometers .

is the 1th error {n navigation acceleration.

-W~
o
g

Fach 63&1 is treated separately (i.e., a th and GV& integrated for each

of the six errors) to determine the miss associated with each error source. :

A-2.2 GYRO ERRORS ]

The error caused by the gyros in the transformation of the accel- :
eration measured by the accelerometer cluster into the navigation frame is 1
discussed in this section. The errors arise due to the drift of the gyro
stabilized reference frame, which may either be an actual inertially-stable
structure of a computational reference derived from rate (or angle incre-
ment) measurements by the gyros. I[n either case, the acceleration error
can be calculated from an accumulated misalignment caused by gyro drift.

The acceleration error associated with gyro drift {s represented
by:

say = [#][ATN] 3, - 3

where

[¢] 1is the gyro derived misalignment matrix
a is the acceleration measured in accelerometer coordinates

is the acceleration computed in navigation coordinates

A-5
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The gyro-derived misalignment is the first integral of the gyro drift
rate, which is expressed as:

say = [GTN] 8wy

where
[6TN] is the gyro-to-navigation transformation (edther

a constant or an integral of the gyro rate)

Gmh is the error in the rate about the gyro input
axes

The derivative of [¢] 1s

(6] = fouy] Ce]

where 0 -duy,  Suy,
[GwN] fs the cross product matr1x G“Nz 0 -6me

Note that if, fnitially, (¢(0)] = (1], then
[e(t)] is of the form [I]+ [f(amN)]

where [}(GEN)J represents the contribution of the Sy to [0] at time t.
However, if products of terms involving GGN aras ignored

[4] = [GwN]([I] + [f(amN)])

[6] = [susN_] + [0)

[o(t)) -ft [cay()] de+ [st0)]

0

and

A-6
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'?’,a;\' Thus, the misalignment of the accelerometer-to-navigation transformation
m can be computed from the drift rate errors associated with the gyros.
i‘ For example, consider a constant fixed drift error of an ortho-
:"i gonal triad of initially-stable single degree-of-freedom gyros coincident
',} with the navigation coordinate frame. In this case
M
b .
. S
i where
{ $, » the drift rate of the ith gyro
h' : D, = the fixed drift coefficient of the ith gyro
k
i Therefaore,
v , 1
i [ O, n
2 ] Swy, =10 = 10 1
E- | 0 0
L
‘ 0 0
‘SmNZ - ‘by . D.V
0 0 :
4
GNNB . ? b 0 |
®, Dz |
and ;
1 0 0 i
f [4,1] «|0 1 Dt 5
| 0 DOt 1 %
: X . w
|
-
Lo o {
[¢2] o 1 0
Dt 0 1
y ] |
A-7 ;
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1l Dt O
: [¢3] - fo,t 0
;. 0 0
i l Finally,
b
: 0
3 sa, = |-a,} Dt
I,
- - %
}\‘ 5&2 - 0 Dyt
3 -ax
-
- "y
fag = a, 0,t
0

A-2.3 STRUCTURAL COMPLIANCE

e ————— e

This discussion of the structural compliance is not detailed or
involved. Basically, only the effect of the compliance of the accelerometer
: relative to the navigation frame is considered. [t {s recognized that this
#; is only one compliance out of many which exist but the ideas presented re-

{, garding the treatment of accelerometer bending can be applied to other
‘ bending modes as well,

Essentially, all structural compiiance of the mounting frame
of the platform results in the accelerometer sensitive axes oriented in
an unknown direction. The misalignment can be considered small and modeled

as follows

R N S Y T

sa, = CiJkajak ;

A-8
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where
6a1 is the arror of the ith accelerometer measurement

due to structural compliance

. C1Jk {s the coefficient of bending of the ith accel-
‘o erometer sensitive axis toward the jth direction
: by accelaration along the kth direction

; ajak accaleration components.

Depending upon the test data available, 3 and 3 above may be platform
accelarations or accelerometer accelerations. The acceleration error
sa, is treated in exactly the same way as in Section A-2.1,

A-3. STATISTICAL PROCESSING

The processing of the position and velocity errors calculated
in Section A-1 is discussed in this section. Included will be the proe
pagation of the integrated position and velocity errors into CEP.

. -

i The position and velocity errors determined as described in Sec-
tion A-1 for each of the error sources types discussed in Section A-2 re-
prasent a 6 X N matrix (where N represents the number of error terms).
This matrix will be denoted %E; , as it reflects the sensitivity of state

S —

(position and velocity) to unit error source magnitudes, i.e.,

where

GR1 are the position and velocity errors !
associated with the ith error

It is important to note that as a direct result of the linearization of !
the error equations presented in Section A-1, %%; is linear, That is,

A-$

. v
St Acihaad T T
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if a particular error coefficient doubles, the state error associated with

that error also doubles, Thus %%; is a linear mapping of error sources

into state errors; i.e.,

The differential equation stated in Section A-1 can be solved along any
nominal path to produce a %%g at any point along the trajectory. Given

this sensitivity, the miss associated with that trajectory point can be
calculated from the above equation for 65. For example the covariance
of &S 1is

T
. Ty . 38 T, 3§
T
39S s
Ae A
S g Eg 3Eg

where
A ‘represaents covariance of a

E( ) represents expactation

Given the covariance of the state errors, statistical quantities such as
CEP can be calculated.

For example, if the CEP is desired, &3- must ba calculated
g

from navigation initiation to impact. The covariance of the state error
is now determined from the covariance of the error sources, The state
covariance can now be mapped into a downrange, crossrange time coordinate
frame by an orthogonal rotation followed by a projection of the altitude
errors along the nominal impact velocity. viz:
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where

is the mapping of state errors into impact
coordinates (downrange, crossrange, and time)

VD' VC' are the nominal velocity components along downrange,
crossrange and altitude

T 1s the orthogonal 3 x 3 rotation of navigation coor-
dinates into downrange, crossrange and altitude.

Tha CEP can be approximately calculated as
CEP = 0,59 ’AI * JdM
11 22

{s the element of AI in the fth row of the jth
column,

whare

A
I1J
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APPENDIX 8
CALIBRATION AND ALIGNMENT PERFORMANCE
EVALUATION TECHNIQUES

B-1. INTRODUCTION

The analytic technique that estimates the accuracy of calibration
and alignment {s described in this appendix. Basically, the lower bound ac-
curacy of a calibration scheme is estimated with optimal Kaiman filtering
techniques. The deviation of the actual performance of the calibration
technique from the optimal Kalman performance 1s assumed small. This ase
sumption is made because if the optimal technique is substantially more
accurate, 1t is assumed that it, or a sufficiently accurate suboptimal
mechanization, would be implemented. With this simplification, the analy-
sis of many calibration tachniques can be case in a similar form and
quickly performed,

To utilize the Kalman fi{ltering techniques in the analysis of a
calibration schema, the physical process must be dascribed with a linear
state space model. Thus the dynamics of the errors must be described by a
linear differential equation, and the measurements taken during the cali-
bration sequence must be 1inearly related to the errors, Thesa two require-
ments can be written in the form:

X = Fx + Gw (B-1),
2" Hx + v (B-2)

where
X is the state vector describing the hardware errors
F,G,H are model description matrices
v, w are random (white noise) disturbancas,

The model description matrices (F, G, and H) are generdlly complicated
functions of the orientation of the instrument being calibrated and the

8-1
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time derivation of the measurement. However, thase matrices can be com-
puted numerically with 1ittle difficulty.

Equations B-l and 8-2 describe the system dynamics but do not
directly determine the calibration error. However, Kalman filtering can
make use of the same model description matrices to perform a covariance
analysis of the calibration sequence.

Kalman filtering descriptions are found in many books (see for
example, Galb or Meditch) and 1t will not be discussed here in any more
datail than to write down the discrete covariance equations; viz:

Time propagation: Pk(-) = @Pk'1(+)¢T + Q (8-3)
Measurement: Pk(+) = (1 - KH)Pk(-) (B-4)

where

K 1s the Kalman gain
K = PR()HT(RPR(<HT + R)"!

th

¢ 1s tha state transition matrix from the k<1* measurement

to the kth

Pk(-) is the state covariance prior to the kth measurement ‘

h

Pk(+) is the state covariance after the kt measurement

R e T

. H is the observation sensitivity matrix
3 R 1s the observation noise covariance

i Q 1s the system process noise matrix

Equations B-3 and B-4 calculate the covariance of the best estimate of
the state errors after each measurement. i

e e T B et

i The analysis of a calibration sequence is threefold. First, the
E errors of the hardware (gyro drifts, accelerometer biases, structural ;

j B-2
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compliances, gimbal readout errors, etc.) must be identified and error
! models defined (see Appendix A). This describes the hardware mathemati-
cally. In addition to identifying the hardware errors, the init{al un-
certainties in the model coefficients must also be estimated, These can
: come from hardware tolerance specifications, previous calibrations or
@ engineering estimates. Finally, the observation sensitivity matrix, H,
the state transition matrix, ¢, and the system process noise matrix, Q,
can be calculated for the error models defined and the calibration
sequence desired, The state covariance matrix can then be calculated ;
for the measurement sequence of the calibration and alignment technique
under investigation.

T TR T R e 4 T

For example, consider the calibration of one accelerometer whose
errors are A~ axnonentially correlated bias noise, a bias and a scale
factor error. The arror equation for the accelerometer would be:

3 an+hb+ sa )

wherae

sa is the acceleration error
n is 4 time correlated bias
b is the bias
s
a

i il L e o g o

{s the scala factor error
is the sensitive axis acceleration :

" Assume also that the initial noise, bias and scale factor uncertainties
are g, and g respectively, the available measurement is velocity.
and the calibration sequence is the usual up-down accelerometer calibra-
tion. For tha above system the stute variables are: i

X =

cTw 3 <

The initial covariance is therefore

B-3
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0 0 0 0
i 0 0 Gna 0 0
P (<) = 2
0 0 o 0
" 0 0 0 ¢ 2

The state transition matrix can be calculated from the system differen-

; ' L S
|
' tial equation; viz:

X = FX
where
0 1 1 al
0 «1/r 0 O
Fu
0 0 0 O
f
* | 0 0 0 OJ
| which yields
| 1 (1-e"¥T) ¢ at]
] -t/t
B o(t,a) = gFt . |0 e 0 0
t i 0 0 1 0
LO 0 0 1
’ The observation sensitivity matrix is
He (1, 0,0, 0)
The measurement noise is
R-cv2
t' where o, {s the quantization error of the accelerometer. Finally, the
process noise is
B-4
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Q(t) -/'“ s(tqe ! (t)dt!
0
where
0 0 0 0]
2
ge]0 9 0 0
0 0 0 ©
0 0 o 0]
which yields
P L
Q1 9 0 0
qQ Q 0 0
0 0 0 0
K 0 0 o0

where
Q, * qﬁrz[t « 2¢(1 - e't/‘) + % (1« e'Zt/')]

012 - qﬁTZ[l - e-t/‘t - % (1 - e'zt/f)]

. a2l “2t/¢
Q2 * %zll-e"70)

The measurement sequence can be analyzed as follows. First, measure the

velocity integrated by the accelerometer after T seconds in the up posi-
tion. The initial covariance must then be propagated T seconds as:

PL(=) = o(T, g) P(=)e (T, ) + Q(T)

The measurement yields an updated state covariance; viz:

(o) w [ 1= PR e (nT o+ m)7 I Jot ()

B~5
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The second measurement may be performed in a similar fashion; viz:
2 T
P(=) = o(Ty =9) P (=)o (T, -g) + Q(T)
P2e) = [1 - PRCOTCHRB (KT & R) "] P ()

and the resulting covarfance P2(+) ylelds the statistical information
of the calibration procedure.

B-2. SHIP ALIGNMENT

The analysis of the alignment of the SHIP followed the general
procedures outlined in Section -1, The hardware was modeled with the
87 errors described in the SHIP inflight error analysis, The result-
ing model description matrices were:

; " g } no time dependence

R = measurement noise matrix

%%v] for Singer Two-Step
3 x 87

S
H =
[%%—] for gyro compassing
01 kg7 |
where
%g— are the sensitivities of velocity sensed by the SHIP
S

to the error models defined for SHIP.

are the sensitivities of the drift of the gyrocompass
gyro to the error models defined for SHIP.

Qe
w

In addition, the process noise between measurements consisted
of the effect that the gimbal resolver uncertainty had on alignment
about up,

B-6
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The SHIP was simulated in each of the required alignment posi-
tions to calculate H using linear error analysis methods (see Appendix A)
and the necessary Kalman processing performed (Equations B-3 and B-4).

The initial covariance for the SHIP alignment analysis was the
mature post calibration error budget.

8-3, DUAL PS5 CALIBRATION

The analysis of the calibration of the Litton Dual PS5 inertial
reference system was abbreviated by considering the calibration of only
one of the two platforms. The calibration of the other platform was
assumed identical., Thus the gyro and gimbal errors were modeled with
46 error sources, The model description matrices were:

F=0 no time dependence
G=0
R = gimbal resolver rate error covariance

" [%Sg] 2 x 46

where

} are the sensitivities of the inner and outer
gimbal resolver rate readouts to the error
models defined for the PS5,

—
(o3 1%
w

and the gimbal resolver rate errors were those given by Litton for the
PS platform. The measurement sequence was then simulated and the esti-
mates of the calibration accuracy determined.

B-7
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APPENDIX C
SYSTEM PERFORMANCE EVALUATION

c-1. INTROOUCTION

In modeling the accuracy of a maneuvering reentry system, the
mission was divided into four phases:

Prelaunch
Boost
Freeflight
Reentry

The last three phases of flight are {1llustrated schematically in Figure
C-1. The objective is to guide the reentry vehicle to a preselected
target. Ouring each phase a particular function is performed to achieve
the final objective. In the prelaunch phase, the coarse reentry IMU
alignment is determined. ODuring boost, the booster guidance system de«
ploys the reentry vehicle on the trajectory to its reentry point (300,000
ft). In addition, the reentry guidance system is calibrated inflight,
(particularly position, velocity and platform alignment). In the free-
flight phase the initial reentry state {s estimated. DOuring reentry,
the reentry guidance system navigates from the initial reentry state to
the target. The error analysis program handles each mission phase

separately,

c-2. ERROR PROPAGATION

To calculate system accuracy, a linear system error analysis
was performed. Since standard linear error anmalysis was not sufficient
for our purpose, estimation theory was used. The standard analysis as-
sumes an error relationship of the form

C-1

PO

o i W e € e ke
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e Rt

Ag = 37 o (C-1)

P 3

whare

= LA

Ag 1s the error in the state vector (RIMU position,
velocity)

AE 1s the initial error source vector (RIMU platform
alignment, accelerometer and gyro errors, etc.)

€
32 {s a matrix determined by integration of error
= equations on a nominal trajectory

The covariance of the error is given by

cov(ag) = (%é) cov (AE) (%g') '

e - —

where stuperscript T indicates matrix transpose. To obtain %? a simulation

| of the system is needed. Each error source 51 is perturbed by AEi' and the
effects are integrated over the entire trajectory to abtain the sensitivity
3
EEL . Unfortunately, this standard linear error analysis does not easily
i

\ § accommodate external measurements. Since it is desired to use external

B measurements, such as a match with the booster [MU (BIMU) or GPS

X measurements, the technigque of linear estimation theory was used. However,

ti the standard linear error analysis method was used to obtain the matrix

| o€
N 5? for incorporation into the analysis by estimation theory.

d With linear estimation theory, the system is described by a 1
X § state vector X which includes all iaformation relevant to the state
of the system, such as position, velocity, and error sources wnich
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affect the system. Typical error sources fer the case of the BIMU navaid

are shown {n Table C-1, If GPS is thenavaid, then reentry vehicle
clock errors and GPS satellite errors are also included.

The system model assumes that calibrated values of the system
parameters are compensated inflight. Therefore, to analyze optimal sys-
tem performance, the state vector 1s linearized about the calibrated,
values of the system parameters. The relevant equation {is

xie) = xS(e) - sk (t)
where
x?(t) is the actual value of the {1t system parameter at

time t

x?(t) is the value of the 1th system parameter at time t
as stored in the flight computer

Gxi(t) is the yth system error at time t

For 1inear error analysis sX(t) is used as the state vector. The
composition of the state vector for the case of a BIMU navaid 1s shown
in Table C-2. Note that the BIMU and the G&G errors are considered

separataly from the RIMU errors. This allows separate treatment of each
portion of the state vector.

The 1inearized state vector is assumed to satisfy the 1inear
differential equation

sX(t) = F(£)6X(t) + M(t)u(t) (c-2)

c-4
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Table C-1. System Error Sources

Reentry IMU (RIMU)

e Alignment
e Platform (compliance, gimbals)
® Accelerometers

e Gyros

Booster IMU (BIMY)

e Alignment

e Platform (compliance, gimbals)
o Accelerometers

e (yros

Geodetic and Geophysical

e Launch and target location

e Earth model (gravity and shape)

C-5




Table C-2. System State Vector

S [P ECI position error
T ECI velocity error
gg? RIMU alignment errors
QPR RIMU platform errors
S T TR
gA RIMU accelerometer errors
R
E RIMU gyro arrors
s EN 9y
Erim
= E.--- | ﬂ BIMU alignment errors
Eatmy 1) gnment er
LEG&G ) EPB * BIMU platform errors
= TUTI e
EA 8IMU accelerometer errors
LE'Gi BIMU gyro errors
Egag [gG&G] G&G errors
C-6
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where

§X(t) = state vector at time t
Fit) = process matrix

w(t) = random disturbance vector
r(t) = disturbance matrix

The covariance of y(t) is given by

E[u(t)u(t')T]' Qt)8(e-t')

whaere E symbolizes the axpectation operator. The Dirac delta function
§(t-t') 1s nonzero only if t = t', The covariance matrix has a delta

function dependence since w(t) at time t is uncorrelated with w(t') at
a different time t'. J

Integrating Equation C«2 1t 1s found that the state vector
propagates in time by a 1inear transformation with a superimposed random
disturbance: i

§3,

1188y * Gy Wiy (C-3)

where

1inearized state vector at time i-1 }

Cn
P
.
[ ]
—
]

$5. * state transition matrix

random disturbance vector

2]
ey
[ ]

disturbance transition matrix ‘

|
The covariance of ui 1s given by 1
By 1) = Q8

where
{ 11f {4 =

3T ote iy

c-7
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The Kronecker delta sij is used for the discrete time case and indicates
that E‘ at time § is uncorrelated with ﬂd at a different time j.

The state transition matrix can be shown to satisfy the differ-
ential equation

a(t) = F(t)e(t) (C-4)

where F is the process matrix of Equation C-2. The initial condition
on ¢ is

o(ty) = 1

where [ {s the identity matrix. The solution of Equation (C-4) for
constant F 1y

oty ty) = e Flt - t,)

where ¢(t, to) {s the state transition matrix from time to to t.

The discrete noise covariance can be expressed in terms of the

continuous case as
t

T [k . T T
OeiOerbr” *f 2l DROAOET N (5 e (6s)
t
k=1

Measurements are taken at discrete time points, and they are
assumed to be linearly related to the state vector by

where

82, = linearized measurement at time i

e it i
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Hi s measurement matrix

vy v random measurement noise
The covariance of y, 1s given by

Elygyy) = Rysyy

The 1inearizad measurement is related to the actual measuremant by

C_ LA
82y = i - L
where
gﬁ ® actual measurement
;c = nominal measurement expected if state vector
equalad gs

Using the discrete time formulation, the state at time { {s
estimated from an earii{er estimate at time 1 - 1 by

\5&1 - @.‘_1 5&4_1 (C'7)

where the symbol & {ndicates the estimate of X. The covariance P is

propagated in time by
P, sy, P TG, Q G o (C-8)
L X PO LE S IR X | f-191-15%4.1

The state is updated after a measurement with the standard Kalman filter:

L 3 L. A .
Shy o v 8Xy + Ky [511 - Hy Xy ] (C-9)

c-9
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The corresponding covariance update is

, _ .
Py" = (1 = Ky Hy)Py (C-10)

T

where K, = P1'H1T(H1P1'H1 + Ri)-l is the Kalman gain and the super-

scripts + and - indicate before and after a measurement.

The error propagation equations require the calculation of the
state transition matrix ¢. From Equation C-2 it is seen that knowledge
of the system dynamics determines the process matrix F, The prociss
matrix in turn gives rise to the state transition matrix (Equation C-4).
Therefore, the first step in calculating the transition matrix is to
determine the process matrix from the system dynamics.

The differential equation of motion solved by navigation is

GM
AL = === P
RATIE

<-

P
where

P = position vector

V = velocity vector

AS = gansed acceleration vector

GM

earth's gravity constant

However,

A
B + i

A

1>
a

f=<<
[ ]
1<

+ 8y
A

<
»
<

+ SP

where superscript A signifies the actual value (assuming no errors)
and § represents an error term about the actual value.

C-10
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Therefore,

LRI, GM GM

ool eagvong - Byt By

I3 4
+ -égﬂg (P 'Eﬁ)fﬁ . SGM Eﬁ
4 ||

Substracting out the actual terms,

Gii_' $A, --Q-M—ssg_o-..:"gﬂ.s.(OB.P_A)EA_ SGM .P.A

2% |24 |#|

The term sAs {s dua to alignment, platform and accelerometer errors:
e * S0 % Ag + dhp * Sy

where
8¢ = platform alignment errors
sAP « sensed acceleration errors due to platform errors

» sansed acceleration errors due to accalerometer
errors

iy

The GAP tarm {s modeled as a function of the sensed acceleration and the
platform arrors:

. R
(5AP)X fx <A'3' & )
. R
(shp) = ty {Bge Ep7)
. R
($Ap)g = 7 (Ags Ep')
c-11
- - _ ~.> ‘,’---ﬁ “ﬂﬁ;.:"' s s e e - m
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Similarly, GAA can be written as
) e a R
NAA)X 9y (.A_st -E-A )

. B
(shg) = 9y (Bgs E47)
|'/ R
(SAA)Z * 97 (AS' -E-A )
The sensed accelaration errors can therefore be expressed as

. R R
SA, Gixﬂs+f§_p + 9k

where f and g are matrices given by
355
f';E—-R-
-
3A
. D

g » —3x
%,

Writing the previous equation of maotion in terms of the indi-
vidual components, the errors in RIMU position and velocity propagate
in time by

dPx . avx

§Py = 8V

Y 5 @
avx v (o + BPy )dPx + BPXPYaPY + erPzaPZ

* Aggdey - Agyse * !t g (Ept)y ¢ Y (0,

+ YPxG(GM)
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y 2
va = BPYszPX + (a + BPY )5PY + BPYPZdPZ
. R . R
+ YPYG(GM)
. 2
GVZ BPszst + stPYaPY + (a + st )st
R R
+ AgySey - Agyley * ; F2alEp )y * § S (Ep7),
+ Vst(GM)
whare
| P|
5

YI-..

¥l

To keep the equations relatively simple, a spherical earth was assumed
for Equation C-11. However, in the actual simulation, higher order
spherical harmonic gravity terms were included in addition to the GM
term given in Equation C«l1, The alignment in the above equations is
expressed in the same coordinate system as the position and velocity
errors, By means of an orthogonal coordinate transformation, the
alignnent errors can be easily expressed in platform coordinates even
it it differs from the position and velocity coordinates.

C-13
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The RIMU platform alignment errors are modeled as functions of
the sensed acceleration and the gyro errors:

€ - R
R) : (C-12)

A
1

. \
507 My (Ags EGN) \

Sey = hy (Ag,

é’ﬂ'l

The RIMU platform, accelerometer, and gyro erroks are modeled as constants:

Changes in these quantities are handled by including process noise
(Q matrix)., Since the BIMU errors are modeled as errdr sources (i.e.
initial values), these errors ara also constant in time:

Eamy

Finally, the G&G errors are modeled as constants:

0

Eaag *

The F matrix <an be determined from the relation

0

X FX

c-14
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Decomposing the state vector into its components

: ~ T N
: 2 Fli Fr2 0 Fra s
1
f :
r
L. Eximy 0 Fpp 0 0 ERmy
- . (C-13)
g Esimu ° 0 o 0 Eatmy
Basc | [ 0 O 9 ] lbeas |
f‘, Fyy and F12 are obtained from Equation C-11 and are given in Figures

C-2 and C-3, F22 is obtained from Equation C-12 and is given in Figure
C-4, Because GG errors cancel in a-BIMU/RIMU measurement, the F14 term
was not included in the calculation.. Position and velocity errors due to
to G4&G were added in near the end of the calculation (after all measure-
ment updates) to obtain system performance. Note that for the GPS case,
GAG errors can be estimated from pseudo-range measurements. An F14 term
was therefore included for the GPS analysis,

To propagate the covariance {n time, the standard discrete form
is used:

! a T T
:. Prer * *Prox + GG

where N is a solution of
ity ty) = Ft)alt, ty) 5 oltys ty) = 1

For a constant F, the solution of the transition matrix equation 1is

s« O

C-15
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0 0 0 0 1 0
0 0 0 0 0 1
2

Fluo = | (e *8)P BPyPy 8PP, 0 0 0

2
BPyPy (a + 8)Py BPyP, 0 0 0

2
BPyPy 8Py P, (a + )Py 0 0 0
e —
o - 2
[P

3GM

B = ==

P1*

Figure C-2. System Process Matrix Fll
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(EPR)J represents the Jth RIMU platform error

(EAR)d represents the Jth RIMU acceleromater error

Figure C-3. System Process Mautrix F12
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For variable F, a small time interval can be chosen during which F is
approximately constant. ¢ is then approximated uver the interval it as
the product
n F‘At/ﬂ
$ o [T e
1=}
where F, is the average F over the appropriate subinterval. The
exponential can be further approximated as

m At J
eF,At/n (F1 “F)

-2
J-O J!
ThUSa J
nlm (F QE)
se |y =t (c-14)
jepjyuo 3!

The guantities n and m are chosen to be sufficiently large so that the
approximations are adequate.

C-3. INFLIGHT ALIGNMENT

The Kalman filter (Equation C-10) {s used to evaluate the per-
formance of the alignment update. In this appendix, the case of a
measurement using the BIMU is described. To take a specific example,
a velocity measurement {s considerad. A similar procedure is used
for a position measurement. The velocity measurement is defined by

27 Yammu ~ Ve
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The individual velocity terms can be expressed as

i R
Yamu = Yacrual * Yermu * SYquant * SYeac

. B
Yarmu = YactuaL * Yarmu * SYquant * ¥ase

where the velocity errors due to G&G and due to quantization are

separated from the other velocity errors. The measurement equation is
thus:

_ R B
2= SVarmy - Yamu * SYquant - SYquant (C-15)

Since all BIMU errors are treated as constant error sources (i.a. as
fnitial values), the BIMU velocity error as a function of time is given
by

av
Ugrmy (*) * 35 () Egrmy (C-16)
where the derivative indicates the sensitivity of BIMU velocity error
to initial sources. Substituting Equation C-16 into Equation C-15, we
arrive at

W ]
L= a8 - s (8 Egrmy * Slouan (C-17)
- o\B
Youanr

whera t is the time of the meisurement (thrust termination for this
study). From Equation C-17 the measurement matrix is seen to be

i ]
Heloooo10 |0} -g— !
600001 | | CmM

and the noise y is given by

R B
L * SYauant - SYquant

e —c -




e T — s e —— L

LOGICON

The covariance R 1s

=

»
O O 0o
o 0 o
o O O

where

R B
q = cov (8¥aunnt = SYquant!

Substituting the measurement and noise covariance matrices into the
Kaiman filter (Equation C-10), the state is updated, yielding an improved
estimate of RIMU platform alignment, position, and velocity.

C-4. REENTRY INITIALIZATION

After the last measurement has been made, Equation C-8 is used
to propagate the covariance matrix to reentry. So far, position and
velocity errors due to G&G have not been included for the case of the
booster navaid. (F14 of Equation C-13 was not included in the
calculation for the BIMU navaid case.) Therefore, at this point position
and velocity errors due to G&G are combined with errors due to other
sources to obtain the total position and velocity error., The covariance
matrix at this point represents the full covariance of the state at
reentry for the case of an optimal state propagation method such as a
simulation. [f other propagation mathods are of interest, additional
grrors due to the particular technique must be inrluded.
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c-5. INCORRECT SYSTEM MODELING

The discussion so far has centered on calculating the covariance
for the optimal case in which the complete system dynamics and maasurements
are modeled correctly. Oue to computer restrictions or lack of knowledge
of the system dynamics, it 1s not always possible to simulate the system
exactly. In this situation it 1s still necessary to be able to evaluate
system parformance, although the standard equations for optimal estimation
no longer hold. The appropriate equations are given here without proof.

A derivation can be found in Section C-7,

The true system dynamics are given by

By =gy Ky * Gy My (C-18)
The true measurement {s related to tha states by
B rH ity (c-19)

The covariance of EJ and X4 ara QJ and RJ respectively, The suboptimal
f{1ter assumes the model to be

* » " LJ »

Ky®ogen Kop * Gy Wy (c-20)
b= Hy X4y 21
YLty (c-21)

where the covariance of H; and 1; are respectively Q; and R;. The
starred quantities do not necessarily equal the unstarred quantities
modeled in Equations C-18 and C-19, The equations used by the filter to
update the state and covariance are

Al
[ ]

x » it
27 %1 Lyt

. (C~22)
AWg vl « w o~
Yy *M(%‘”J%d)

¢-22
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* v 1 T
-1

Y ey, P
37 %1 T Yy

LIS L ] w W
tT *T t) -1
YRR (“J Py Hy T Ry
Since the filter doas not model the system correctly, it produscs a
suboptimal estimate of the state. I[n addition, the quantity P calculated

by the filter does not represent the true covariance of the state, The
true covariance i{s propagatad in time by the following set of equations:

» W »
* Gy o 8

o NT Lo T T a7
P ® dga1 Pret ¥kt ¥ 9ke1 Vke1 80kaq * deay Yoy 9k
T T ) (C-23)
* 8oyl Ygaq degay * Gy Oy Byeg
v, Vo . ell. 4 T ® . Gy
K" ¥K=1 YKol ®K-1 ¥ Ok-1 Ukl 40kay = Ok 9oy 9kt
T T
Ug = dgoq Y1 *ket * Ok1 Koy Sk

After a measurament the true covariance is given by

T T

T *T R " T

" . " T .

o Vi (1~ Ky KT - Ug aHE K (c-24"
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where

A "9 =9

o
"

e [ix - &) - 8T cov )
s ]

€ [y - &7

-
a

In the above equations, E indicates the expectation oparator. Using the
above equations, the true covariance of the state can be propagated.
This technique was used to estimate the accuracy of the state at reentry
for the case in which a suboptimal filter was used to process GPS mea-
surements,

Cc-6. COMPUTER PROGRAM_ORGANTIZATION

A flow diagram indicating the computar programs used in the
system performance evaluation is shown in Figure C-5. The 1inear error
analysis program (Appendix A) generates the RIMU transition matrices (Fll'
Fla' F14. and F22) for the boost and reentry portions of the trajectory.
For the GPS case, it also generates transition matrices of the navaid (sat-
ellite) position and velocity error due to G&G. GEM represents several
programs which generate a magnetic tape consisting of the navaid transition
and measurement matrices and the RIMU measurement matrix. For the case of
the BIMU navaid, the navaid transition matrix and the RIMU measurement
matrix are the identity matrix. The system error analysis program (SEAP)
uses the Kalman filter formulation to evaluate performance. The RIMU free-
flight transition matrices are generated internally by SEAP, Effects due
to disturbance noise (Q matrix) for both the RIMU and the navaid are cal-
culated by SEAP, Covariance matrices at the points of interest are output

c-24
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by SEAP in saveral coordinate systems: ECI, downrange - crossiange -
altitude. or downrange - crossrange - time. These covariance matrices
describe the system performance.

c-7. SUBOPTIMAL FILTER EQUATIONS

This saction presents equations which calculate the true co-
variance of a state as estimated by a suboptimal filter., They may be ap-
plied to tha linear discrete case in which the suboptimal f{lter employs
incorrect transition and measurement matrices, suboptimal gains, and a
reduced order state vector., Analogous equations can be found in Reference
C-1 for the special case of the suboptimal filter employing the full size
(truth modal) state vector.

A linear system {s assumed for the systam model. Thus, state
vector dynamics is given by:

% ® el Kol * Gay et (C-25)
where
Xea1 = state vactor at time k-l
¥ ™ State transition matrix
We.y " 28ro mean raidom disturbance vector at time k-1
Ge.q ™ disturbance transition matrix

A measurement of the state at time k is given by:
shere
z, " measurement vector at time k

Hk » measurement matrix

c-26
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Vg * 2aro mean random measurement noise vector
at time k

x 1s an n vectur; w is an p vector; 2 {s an m vector; all other
quantities are assumed to he dimansionally compatible, x {s assumed tc
be a zero mean varfable. [n addition, the covariance of Wi-1 s given
by Qk-l' and the covariance of Yy {s given by Rk:

E(W, wJT) - Q 8y
E(vk wj) »Q
Note that Wy and Yy at time k are each uncorrelated with wJ and “J at a
different time J, and that Wy and v are uncorrelated with each other,

The suboptimal filter assumes the following system model:
* » w » *
X ™ tat Xka1 ¥ G Weag (c.27)
» W »
z: * Hy Xe * Vi (C-28)
where x* is an I vector. w* and v* are described statistically by
L I ] '
E(wk wj) . Qk ij
" W ]
E(\Jk vJ) “ Ry ij
v »
E(wk \JJ) a (

The filter can therefore assume incorrect system dynamics. In addition,
the filter doe: not nacessarily account for all elements of the state
vector since x can have a smaller dimension than x.

The relation between x' and x is given by

»
! X = Wx (C-29)

c-27
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where W is an £ x n matrix. If x* is furmed by deleting bias states
from x, then W takes the form

; W= (1{0)

g In this case the state vector x is partitioned as

‘ x " (-!-

: b

! and the filter uses only the states

x" = (s)

¢ Thus,

‘] X v (s) = (110) (F) = ux

ff The covariance equations can be derived from the above by letting
- Wl be defined by

i ] TRLE (C-30)

If x* is formed by deleting bias states from x, then w‘l has the form

Wl (.I.) (C~31)
0
(Actually, any quantity can replace the 0 in the above equation and still

- satisfy Equation C-30. However, for Equation C-30 to be correct, w'1 is
4 uniquely given by Equation C-31 for the case of deleting bias states from
the state vector.) Let i:_l be the suboptimal filter's estimate of x at
time k-1. The error x, , in the filter's estimate of the state vector is

%
gt given by
;f.
{
i

. Ll

: s W - (C-32a)

e T B D e e m T

% ‘ The f1lter estimate of the state is propagated in time by

h (Y ” AW
| X ™ dal Xkl (C-32) é

C-28
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Substituting Equations C-25 and C-27 into Equation C-32a and doing some
algebraic manipulation we get
- -1 * AR
X = W0 Moy = GOy Xear * Gy Wiy

i .1 -1
R = W 0 g WWT xy = WT0y g WXy

oy w
WO MR T Py Xear T Bey Ykt

The resulting equation 1

*
A ® Gy Bt e Keer T Bl kel (C-33)

where

Let us define a new vector X by the ralation

= ()

X {s propagated in time by

X ¥ Ad X ~W
X ® ( ") o [P e (""1)+ 6e1 ( “) (c-34)
X X w

K 0 VAN k-1

The equation for the mean square value of X {s given by
P e e

TR T

T (C-35)

a E
xiT XX

c-29
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Subst tuting Equation C-34 into Equation C-35, we find that}ﬁjpropagates in
time by '

o .- o, 1\
L
v’ wk_l k“l -> wk_l k'l
‘fk * +k-1
0 %y O %
T T
M-kl "Wke1"k-1 T
*E |Gy . Gy-1 (¢-36)

T
We1"k-1 Wke1%k-1
Defining the quantities P, U, V by

P = E(XX)
U= E(xxT)
Vo= E(xx")

the quantity‘fjis seen to be given by

L. (P VT) (c-37)

L

P is the covariance of the filter estimate of x and is the quantity we
are trying to calculate. U is the mean square value of the state vector
X, with no estimate of the state substracted off. If the initial
covariance of x before the first measurement (i.e., before the estimate
of x 1is updated from zero) 1s given by PO‘ then the initial conditions
are

UO = PO (C-38)
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Multiplying out the matrices in Equation C-36 and comparing with
Equation C-37, we find that the covariance is propagated in time by

. T T
U ™ 01 Yeet Bk ¥ By %oy g (¢-39)

- *T T T
e fen ket By ke Yen 80e1 7 Ser Gy By

T
k-1

| | ‘ .

*
Pe ™ by . Prog 8,7 * 0y Vg 0

T T I N T T R R T e i

_ T T r
3 g kel M1 Y 80 Uiy 80y

.
* Gy Qer G-y

; Note that tee propagation of the true covariance P does not explicitly
_ depend on Q . By contrast, the covariance as calculated by the filter
é (computed covariance) is given by
T

{

|

|

|

x T

L ] w » w "
P ™ ®ke1 Pret Bker * Geq Qop Gey

The computed covariance is therefore a function of Q*.

Simi). - equations can be derived for a measurement update. The
L
estimate of x after a measurement is given by
- ,\*+- AW = K* * % -']
’ Xe = X K& [’k' He %¢ |
whare K: is the gain used by the filter. The error in the estimate is
given by

+ “] %+

Rk.w Xk'xk

~+= '1 A% ‘1*[ - *“*-]-
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+ - -1 f\*- . _1 * - - -1 Agp =
-1 * N-l » H* N

-1

* -] ®
+ W Ky Hk X, * W Ke Vi

»
o R K M R K Rt K v (c~40)
where

L *
He = H W

K
*
"

ul »
W*K
K K
»

Augmunting the state vector as bafore

+*
k Xy

and taking the mean square value of X;. we can use Equations C-26, C-28,
C-37, and C-40 to obtain

-+ - A
Uk = Uk (L‘41)

- » *T - T T
+* * »

pk«(x-ﬁg‘k wk)pk(x-nw o
T

"
T

Kw AH V (I - Kw H
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Note that the measurement update of P does not explicitly depend upon R*.
However, Equation C-41 does implicitly involve R* and Q* if the gain K* is
chosen to be a function of these quantities. Note that if x* « x (1.e.,

W = 1) and the corract dynamics are implemented (aH = a¢ = 0), then
Equations C-39 and C-41 reduce to the standard form for the optimal Kalman
filter, A

It the f{lter state x* is formed by deleting states from the full »
state vector x, then the covarfance P can be expressed in terms of the re- L
tained stutes s and the deleted states b: .

et o) - (40 - @]

.

T 1
E [(R* - s){(R - s) ] E [-(9* - s)bT} L

R T |
3 [~b(2 - 8 ] 5 [bb ] |

Defining Pl’ Pz. P3 by

—

P=

* w T
P, -EBR -s){R - s) }
* T ‘

- efo o] |

T ]
Py ® F b ] y
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the covariance P is seen to be given by

Equations -39 and C-41 provide the full covariance matrix P and
are equivalent to propagating a 2» x 2n matrix, For large n this can re-
quire excessive computer time and memory. Often one {s interested only in
the quantity Pl. In this case, 1t is possible to formulate equations which
r:quire propagation of an (n + 2¢) x (n + &) matrix where ¢ is the order of
X . This can result in significant savings 1f most states in the state
vector ara to be deleted.

Define the following:

Gw " WG,

K
L "
2k . Rk - ka

A¢k

W
@kw - N¢k

AHk

w

o T
E(R X% )
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V wE(xX )

E(x x T) = |
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The covariance of the retained states can be derived as hefore. Since
the method has already been presented, only the results are given here.

The initial condition, hefore an estimate of the state is per=
formed, 1s given by

P R S S

CT
Py = WU, W

The covariance is propagated in time by

LT e e

A A

t - ' T T
Uk ® %1 Y1 k=1 * Get Qar Goy (C~42)
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% The measurement update is given by

i: (K] [l

§ | U = Uy

"‘ : l+ [ w » T ] lT *T
o

i '+ * oW " v w7

i

* % I'T |T *T

- T
w ' | % %
- K M Y (T K H)
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In summary, the following equations can be used to propagate the

. full suboptimal f{lter covariance:

Initialize with

(Tha initialization assumes no prior estimate of the state.)

Propagate in time by

T T
Uk * 9%t Yot fen ¥ Gkt Qoy Gkay

Vp = ¢, . V ¢' L ¢4 U A¢T -G 0Q N
; K ke Vet Qw0 * ket Vet e 7 By Gen S
4 ] " K T
P, = P ¢ T+ Ad v )
k wk‘l k‘l Wk_l k‘l k'l Nk_l

T T T

w
Py Vel Met T A% Dy My

| T
* Gy Qo Gy

Update aftar a measursmant by

+ -
U ® U

T

* - o T - T
Ve * Vi (I'Kwk Hwk) " U M Ry
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y ‘ Similar equations can be used to propagate the covariance of
! the states retained by the filter.
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APPENDIX D
LINEAR REGULATOR GUIDANCE

In this appendix the results of the analysis of the application of Linear
Regulator theory to the problem of steering an aerodynamically controlled
maneuvering re-entry vehicle are dascribed.

In Section D-1 a steering law and a methodology for the selection of the
associated weighting matrices are derived using time as the system
variable of evolution.

In Section D«2 the use of a state variable as the vari{able of evolution
is investigated. A steering law formulation for this case is derived
and simulation results presented.

In Section D=3 the use of transformations depending on the instantaneous
vehicle state to define the evolutionary variuble are considered and the
mathematical theory of Appendix D-2 modified to incorporate this case.
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D-1. CONTROLLERS IN THE TIME DOMAIN

In this section controllers operating in the time domain are considered.
A controller based or the Linear Quadratic Regulator {s derived and the
stabi1ity and controllability properties are examined. The analysis of
these properties leads to a methodology based on these properties for
the selection of the weaighting matrices associated with the regulator
formulation.

D-1.1 Time Domain System Description

For the present studies the vehicle is assumed to be a bank-to-turn
vehicla which orients the accaleration vector by changing the vehicle
bank angle. The target centared coordinate system and the trajectory
and vehicle orientation angles aie as shown in Figure D-1.

D-1.1.1 Trajectory Equations

The nonlinear dynamic equations of motion for the vehicle are:

; s  \V cosY cos ¥
y » VecosY siny
2 = VsinY
: A cos cosY
Y = ---v-ﬁ + H“TT”‘
(D~1)
¢ = Asing
V cosy
¢ D
V = “nt9 siny
L ]
A = -aA+a Ac
[ ]
Qo =

-sbe+b ¢,
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Figure D-1. Definition of Coordinate Systems )
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where AC is the commanded acceleration and.A 1s the actual acceleration.
and where ¢ is the actual bank angle and ?. 1s the commanded blank angle.
a and b are the autopilot corner frequencies,

The assumptions in (D=1) are constant gravity (g) and flat, nonrotating
earth, The drag force D is a function of angle of attack, Mach number,
and altitude.

D-1.1.2 Approximate Trajectory Model

In previous studies it has been found that the velocity, V, behaves in
such a manner that the difference betwaen it and the nominal velocity

can be ignored. So in the approximate model the V equation will not be
used, and whenever V is needed in the other equations, it will be replac-
ed by the nominal velocity, VN‘ This approximation follows since V is &
sTowly varying monotonically decreasing variable, ana the PGRV has no
diract control over velocity magnitude (i.e., no thrust or braking).

Also 1t {s assumed that the gravity force is negligible in comparison to
the lateral acceleration force for the PGRY maneuvers. Thase approxima-
tions reduce Equations (D-1) to the following equation set:

]
X = VN cos Y cos Y
y = Vy cos Y siny
: . VN sin Y
y A cos ¢
Y =
N (D-2)
[ ]
4
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N COsY

s LA+ aAC
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For convenience, Jet us denote (D-2) by

§t) = £ (8(t), u(t)) 5 t st =t

(0-3
§t,) = &, )

where £ is a vector of seven components given in (D-2) and u(t) is the
vector actuating signal given by

Ac(t)

ue) = Lo )

(D-4)

The vector function f can be identified from (D-2).

Corrasponding to a nominal value for u, say Ups there 1s a solution to
(D=3) which gives the associatad nominal trajectory. Denote by

(xn. “n) the nominal vehicle trajectory and control, with xn(t);

t, s t st the solution to (D-3) corresponding to the open-loop control
un(t); t, S t s t,. Wewill suppose that Uq satisfies all the constraints
placed upon the input and that Xq satisfies both the path and terminal
constraints placed upon the vehicle trajectory.

The actual trajectory of the vehicle will deviate frum the nominal for an
assortment of reasons. The controller output may be up instead of Uy
the trajectory may begin at a point not equal to § o the differential
equation of dascribing the vehicle motion may differ from (0-3) in some
way; etc. Denote the actual vehicle motion by xp and the actual control
signal by u,, The deviation in trajectory and control is given by the
pair (x, u) where

® -
X Xp Xn

= -
u Up Un
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Sin. x and u represent deviations from the ideal trajectories given

by (xn. un). it is natural to try to make them as small as possible, Un-
fortunately, (x,u) is a vector time function and pointwise minimization
is impossible. Furthermore, since (x,u) represent all of the vehicle
characteristics unmodeled by (D-3), the dynamics of the perturbation
variables are difficult to quantify.

Certain assumptions and approximations make the problem simpler to solve.
It will te assumed that (D-3) represents the vehicle dynamics and there
is an error in the starting point of the trajectory; i.e., the initial
condition on xp differs from X
Xy(8g) 7 x,(tg)

Further (x,u) will be assumed to be small enough that the dynamical equa-
tions of the perturbation variables are given to an adequate degres of
closeness by

. 3
X ® Fx + GQu to $t s tf
(D-6)
x(to) * xp(to) - xn(to)
where

3 f J
FI — H (‘n.——.

X ) Ju (0-7)
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For the system described in (D-2) F and G are given by *

-
| "o ? ? (D-8)
. Fu v G=]s D-8
o 0 Fa a 0
’ 0 b
f;% where
i ".¥ siny cosy -V cosy siny 0 O
. F12 - -V siny siny V cosy cosy O 0 (D=9)
i : L V cosy 0 0 0
b [ 0 0 -V-icose v-la 51n¢1
? : A sinp siny 0 sing A cos¢
ol Foy = .
? 22 v c052Y V cosy V cosy (D-10)
0 0 -4 0
0 0 0 -
A1l of the control and trajectory variables are evaluated on the nominal
1

trajectory. The matrix F is time variable on the trajectories of
interest, but the accelerations are such that the variation is “"slow".

D-1.2 Time Domain Controller Definition

Thare are saveral properties which the controller should possess. First,
it should be a full state feedback policy. Further the control algorithm
must have a simple structure. Linear cuntrol rules provide a large class
of easy to mechanize controllers and attention will be restricted to this
class. The closed-loop system must be asymptotically stable about the

nominal trajectory and must follow the nominal with small errors., In :

e e s T ik Y e ol

i it

*To simplify notation the dimensions of null and identity matrices will /
not be given if obvious from the context. E
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addition it is desirable that the controller be robust in the sense that
1f the dynamic equation of perturbation variables differs from that

given in (D-6), the closed-loop systam response will still be satisfac-
tory.

To produce 2 suitable contoller, an index of controller performance will
be introduced. Since xp should track X, as closely as possible, x should
be minimized. To measure the closeness in tracking at time t a quadratic
weighting will be used; x(t)'Q(t)x(t); where Q is positive semidefinite
symmetric (Q20). To minimize the deviation in control from that re-
quired on the nominal trajectory a quadratic measure will also be used;
u(t) 'R(t)u(t) with R > 0 (the specific value of R is given in Reference
0=1). Finally terminal miss will also be weighted in the performance
index with a quadratic term; x(tf)'Pfx(tf) with Pe 2 0. The full per-
formance index is the generalized sum of the weightings at all of the
time points along the trajectory;

ty
J = x(t)'Pex(t) 4;/ﬂ [x'(£)Q(t)x(t) + u'(tIR(tIu(t)]dt (D-11)

Y

[t 1s well known from linear regulator theory that the control policy
which 1s best with respect to the indicated measure of performance is
given by

u = =R

G'Px (D-12)
with
b a -F'P - PF + PGR™1G'P - Q

(o) = (0-13)

The control policy given by (b-11) has many of the properties considered
to be desirable in this application. It {is linear with time variable
gains. Furthermore, the system is stable 1f the model (D-6) satisfies

D-8
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certain technical conditions which will be considered in detail in later
sactfons of this appendix.

Furthermore, (D-12) 1s robust control. Suppose that the true representa-
tion for x should satisfy an equation of the form 1

. x = Fx + Qu +w
. | (D-14)
vl x(t,) = xp(to) - xp(t,)

- . P

where w 1s a high frequency random disturbance and the coefficient mat-
i rices (F,G) differ slightly from (F,G) given by (D-7). The random force
ing term w could represent the influence of turbulence, atmospheric in-
i, homogeneties, unmodeled high frequency vehicle dynamics, etc. The j
: : elements in the coefficient matrix may change because of changes in the
i 111t and drag coefficients, etc. It is well known that even in the pre-
sence of unmodeled high frequency disturbances, the 1inear faedback
control givan by (D-12) performs the path following and stabilization
functions in the best possible way. In addition, this controller gives
the closed loop system the property of having a uniformly smaller sensitive-
. ity to parameter variations than that exhibited by the open=loup systenm.

S .

The control policy given by (D-12) has many favorable attributes in the I
application under study. The general form given by (D-12) and (0-13) ‘
is broad enough to include all of the controllers which might reasonably
be studied at this stage in the invastigation. The fundamental problem
in design is the selection of the appropriate weighting matrices in the
! performance index. This choice must be made judiciously in order to
simultaneously provide adequate path following performance and a ter-

- minal miss within specified bounds.
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D-1.3 Selection of Weighting Matrices .

Although the controller given by (D-11) has all of the previously listed
attributes for any permissible choice of (P,Q,R), system performance may
sti1l be unsatisfactory. For example, although the closed-loop system is
asymptotically stable, it may be inadequately damped. Effecting changes
in the closed-100p damping is accomplished by modifying the weighting
matrices of (D-11), but unfortunately 1t is not immediately evident how
{P,Q,R) should be changed.

For some purposas it is more convenient to study vehicle motion in a
rotated coordinate system. Let T be the coordinate transformation
given by

whery
cosy cosy cosy siny siny
T11 = ~siny cosy 0
-siny cosv -siny siny cosy

It can easily be shown that if we let z represent the perturbed state in
the rotated coordinate system; i.e.,

2= Tx (D=16)

then (see Reference D-3, (A-3) and Reference D-3)

£ wF,2+Gu (0-17)

0-10
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i where

g 0 veosy ¥ 0 0 0 0

L Jcosy 0 psiny 0 V cosy 0 0

¥ - “ysiny 0 v 0 0 0 |
. 0 0 0 0 0 losy VA simy 1
i : " A siny sin {

i 0 0 0 —-“-‘,—Y- 0 S, Acosy

f Vv cos®y Vcosy  V cosy ‘
i 0 0 0 0 0 -“ 0
L o 0 0 0 0 0 S 1

T TR T

This change in state variable represantation resolves the vehicle motion 1
into a component along the velocity vector‘zl. an orthogonal component ]
in the plane of the motion 245 and third component perpendicular to the 3
plane of vehicle motion 25,

The uncontrolled systam given by (D-17) has anomalous stability propar-
ties. To 1llustrate these, consider the case in which the coefficients

in (Fz' G) are slowly varying, {.e.,

R e T

Y, U, & are small

A, V are constant.

3;f ’ The stability of the open-lcop system is partially characterized by the
open-100op poles which are in turn given by the eigenvalues of Fz. Direct
calculation (see Refarence D- 2, (23)) shows that these efgenvalues Oyt

are located at points given by i

(g = {0, 0, 0, ¢ ViZs 2, b} (0-18)

* If z is a vector, z, is its ith component. The vector 21 is a unit |
vector in the ith direction,




Only those poles attributable to the autopilot are in the left half plane.
The poles nf the vehicle are all on the imaginary axis and indeed there
are five poles very near the origin. While a system with poles given by
(D=18) could, under very unusual conditions be stable, it could never be
asymptotically stable. Only through feedback can the system be made
asymptotically stable.

Because of the lack of open-loop damping, the existence of a feedback
controller which will stabilize the closed-1oop system depends upon the
satisfaction of a technical condition on Fz.G . The condition is
called controllability. A controllable system is one in which any
initial error can be eliminated with a 1inear feedback control law in
an arbitrarily short time*. The property of a controllable system of
relevance here is that if FZ.GJ {s controllable then the closad-1oop
system given by (D-6) and (D-12) {s asymptotically stable.

Under the assumption that the coefficient matrices are sufficiently
smooth, an algebraic condition for controllability can be deduced.
Define the matrix sequence ‘Mi(t)z by

1
Molt) = 6(t) (0-19)
Mot (8) = =F(EM(E) + M (£); k = 0.1,

Then let

cy(e) = [y ] (0-20)

* This Is actually a strong form of controllability, but this definition
will suffice for the system under study here,

0-12
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The system described by (D-6) is instantameously controllable {if rank
Cn(t)-n.

The matrix cn(t) given by (D-20) bears striking resemblance to the
controllability matrix Cn for a time invariant system. Indeed it {s
easy to see that

. nel
rank cn(t) rank [G. F?_.G......Fz G]

if [FZ.G] is a constant matrix.

In Reference D-2 both &, and C, wars studied and 1t was shown that
rank L. 6 (D~21a)
rank Cn(t) w7 (D-21b)

The implication of (D-21) is important in this application. Equation
(D=21b) 1s sufficient to guarantee that closed-loop system guidance law
displayed in (D-12) {s asymptotically stable for appropriately restricted
weightings in (D-11). Equation (D-21a) indicates that the degree of sta-
bi1ity may be inadequate. To see why this 1s s0, a careful study of the
implications of uncontrollability 15 required. The state space of linear
system may always be decomposed into a set of states or modes that are con-
trollable and a residual set which are uncontrollable. These former
modes are always stabilizable by linear feedback while the latter are
unaffected by l1inear feedback. If the uncontrolled modes are not
asymptotically stable the closed-loop system will not be asymptotically
stable either.

The system in question is controllable but for any fixed time say t* the

matrices [%z(t*). G(t*)] do not satisfy the conditions for time invari-
ant contrnllability. The system could be described as being locally

0-13
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uncontrollable mode which rotates with time. Detailed analysis shows
that the locally uncontroilable direction in state space rotates among
the eigenvectors of Fz(t) which have zero damping. The system is then
said to be locally nonstabilizable in the sense that for every fixed t,
the constant matrix Fz’G is not stabil{izable. If FZ.GJ were 2
rapidly varying function of time, no adverse effect would be expected
| from these local properties. Unfortunately, the nominal trajectory

| considered for this vahicle results in very slowly varying dynamic
matrices in (0D-6). It 1s to be expected, therefore, that the closed-
1oop system will exhibit peculiarities normally associated with un-
controllable systems.

MJ—.'-‘,‘,[."..

[

The above qualitative discussion can ba made more precise by reference
to C,(t). Denote by ??J the set of vectors in R7 orthugonal to both
columns of MJ; i.e.

Nyt = {'!: ze R/, z'My(t) [0.0]}
and let é%;(t) be its complament. Define the positive definite matrix {
| W(tioty) by g
L Wety) o 2 0 (e, O)6RT(E) 6 () @' (b TaT
t

i st ol

1 . ,

where 9, is the transition matrix of Fz' It can be shown (Reference D=-3)
that if z(tl) is an eiganvector of w(tl.tl +4) and If

1-1
z(tl) c v ?ZRfﬁ771 , then for snall A,z(tl) can be transferred to the
R=Q

; -(1+21)
f origin with control energy proportional to 4 , The implication

! of this result is important. For example, {f z(to) is a linear combi-
ﬁ” natioh of columns of G, the errcr can be eliminated by direct action of
| u and the energy is proportional to A'l. Moreover, if 2, and z, are
orthogonal eigenvectors of N(to.t°4-A) and if Q!'Mj(to)- [wl.O] )

DS A
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zéMj(to) = [0.w2] » then the energy required to transfer z, to the
‘ Wo\ 2
origin is, for smalla, 1;3 times that required to cause a similar
1 .
transfer of 2g to the origin., The direction zB is said to be more
w

2 . Clearly if z(t) aTIJ(t) for
1

all (3,t), 1t can not be transferred to the origin at all,

controllable than z, by the factor

Applying these considerations to the system described by (0-17)
some rather interesting system properties can be deduced. Assuming that
the system coefficient matrices are slowly varying, that ve<y, that
a=b and that Yrom * 180° 1t is shown in Refaerence D-3 that to first order

Cl. (25' 27)@-'(0 and 26 and i7 are equally controllable
c2. (is. 54)t °q1f\'7°and is 1s more controllable than
24 by the factor A(cosy )'?
3. (23. 22)c 4?2 N ’?p N ‘71 and iz is mare controllable

than 23 by the factor A

c4. ile 723 ﬂv)‘@ u7{1 u/ql and the energy required to

eliminate errors in 21 s proportional toy -2
Relations C1 through C4 provide measures of the relative controllability
of pairs of modes of the system. They are based upon u(t)'u(t) as the
power measure. The components of u are actually related to different
physical quantities and a better weighting for power would probably be
u'Ru. Such a power weighting measures not only the magnitude of the
components of the actuating signal but also minimizes them with respect

D-15
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to their permissiable size.

Since R>0, (D-6) can be written in the form
% = Fx + GR™¥ (R™) (D-22)

As (D-22) makes clear, the controllability indices given in C1-C4 :an
be modified to provide controllability with respect to u'Ru 1f GR * is
used in (0-19) instead of G. This {s easily done when R is given by

) ! (0-126)

R = diag —~3— ’ 5
8A max a¢ max

where AAmax and A¢max are the maximum permissible magnitude variations

in the actuating sinnals.
It can be shown that C1-C4 become
c1'. 26 and Z, are equally controllable

C2'. Z. is more controllable than z, by the factor

AB 8 pay

aA
max C0SY

ukl

c3', 22 is more controllable than 21 by the factor

Asd max -y El
AAmaX

C4'. The energy required to eliminate errors in 21 is
proportional to Y~

SN = . AP a3




With the relation given in C1' -C4' we are in a position to make a
Judicious choice of the state weighting matrices P and Q. Since the
conditions are stated in the z-coordinate system, the weighting matrices
Pz and Qz corresponding to this coordinate system will be found first,

The statas 26 and z, are autopilot states and there are no penalties
assacliated with their variation. Consequently a reasonable choice for
their weighting would be

| (Qz)gg = (Q)y7 = 0 (D-24)
!
o3
yg The statas 2, and 2 are flight path and azimuth errors, respectively.
VE Suppuse these errors are required to stay within nominal bounds given
f"r .
ﬁ by QQ! 1.8,
) !
P 2 2 2
i 9%
&
i i The usual rule-of-thumb for selecting (Qz)44 and (Qz)55 would be
! 2
[f Q)40 * Q)55 * %
f
L

Suppose M >1, Then 2g is easier to control than 2y by the factor Xl.
For equal initial errors, the residual error in z, at times greater than
t will tend to dominate that in 2; because of the difficulty in applying
effort to 2y To cause the closed-Toop damping in these two modes to be
more nearly the same, a heavier weight should be assigned to 2. The

L waighting of 2, will be increased by the factor xl while maintaining the
do same overall angular deviation; {.e.,

0-17 J
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(q,),
Q)5 + (055 = 29,7 & w0y
(qz)ss
This ytalds (D-26)
,“12 2 . () 2
(Q;)44 Ton? % ¢ (et ""‘Ek %

It {s readily apparent that (D-26) provides suitable weightings when
A | S 1 as well,

The important trajectory variables are 2, and 24 which measure errors
orthoyonal to the nominal trajectory. Reasoning as we did in the
previous paragraph if

2, .2 2 .
m%x (z2 + ‘3) s <% (D=27)
| "
' then
2
2 2
2 2 . 2 .
(QZ)ZZ . : Q4 (Qz)33 " Q (0-28)
1+ 2 1+ Aa
The final state variable measures motion along the nominal velocity vector |
vactor., As C&¢' indicates errors in this direction are quite difficult to

control. Errors in Zy require energy proportional to v -2 to correct
and ¥ is fairly small {n this problem. It is easy .o see the physical ]
cause of the difficulty in controlling z,. Neither normal acceleration )
nor bank angle commands create any first order change in tangential

velocity. If the flight pati, angle were constant ( ¥ = 0) errors along
;! the velocity vactor could not be eliminated (the system is not stabiliz-
| able). Since Y # O we have some control over 2y, This is accomplished
by shortening or lengthening the turning radius of the vehicle. To

e g —— A,
ol

s A . e

D-18




' accomplish regulation of path length, sizable amounts of control force
' i are required to produce small variations in zy. Because of this very ;
) weak coupling between u and 24 if 2y has a weighting in Qz' u will have _
! a tendency to give excessive attention to this error. ?

If the absolute time of evolution along the trajectory is of little

, concern, the system can be made insensitive to tangential errors by

} making (02)11 = 0, In this specific application this is a reasonahle
s choice since terminal impact performance is of primary concern.

The final form of Qz is then:

z ' 1! 1 ;
b+, Ly (0-29) !
2 2 ;
2 x] 2q
qzi 2 10|° ‘
1+ AIZ 2% 14 xlz

where { Ag} are given in €2' and C4' and ay are given in (D-25)

and (D-28)

For the reasons outlined above, the only terminal errors are those
associated with errors parpendicular to the flight path., I[f

2(t)? + z§ (te) ;gz (D-30)
3

a reasonable choice of Pf would be

2 2
2\ 2
2 2 <9
p = diag {0, q — . 0,0,0,0 .
nf T TOE Y e, (0-31)
D-19
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Equations {D-23), (D-29), and (D-31) give the weighting matrices in the
z-coordinate system. The actual observations and calculations take place
in the x-coordinate systam. 1t is shown in Reference 0-2 that an
optimization problem in the z-«coordinate system with respect to the
waighting (pz'Qz‘Rz) is equivalent tn the optimization problem in the
x=coordinate system parameterized by (T'PZT.T'OZT.RZ). Using the value

of T given in (D-15), it follows that

Pe= TP, T

P 0
0 (el
where (Pt.)11 »
[, 3
24
I:;iz (A2231n2w + sinzv cusz¢)
2 2
2 93 2 2 2 Rk
-\, “cosy sing + sin“y siny cos )
1+A22 ( 2 cosv 1+x22
: q33 iny ¢ v Z q32
-— (s ny cosy cos) -
(Pylyp = 0
Similarly,
Q= T'QZT
T

2 2 2 2
A 2€08 ¢ + sin“y sin®y Xy

siny cosy siny

1

c9 2
-3 cos"y

+A2 i
(D-33)

(D-34)

(D-35)
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where )
92
it =z (Pl (D-36)
9
2 2
2 2q
Qgp = dhag | —L 0,f . =~ 0,0 (0-37)
L+ 1+

Equations (D-23), (D-33), (D-34), (D-36), and (D-37) give the fina)
system weighting matrices for this design problem.

D«1.4 An_Example

The previous section provides a procedure for selecting the weighting
matrices to be used in the synthesis of a vehicle guidance law., To
111u§trate the utility of these weighting matrices a simple example is
useful., In this example two controllers will be compared. The first Uy
will use a modification of tne techniques presented above while the sec-
ond will use welighting matrices which might have been chosed after
viewing the open-loop simuiation.

To isolate the influence of the coordinate transformations, (P, Q, R)
have been kept as close as possible for the two controllers Denote
the weighting matrices associated with control 1 by (pi'Qi'Ri)'

Then

The scalar ry Measures the perturbed acceleration along the nominal tra-
Jectory. 1ts calculation is detailed in Reference D-5. Suffice it to
say that

rlt) = (007 5 v (ty) & (10077 (0-39)

5 .
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with a smooth monotonic variation in between. The perturbation in bank
angle was restricted to about 10° and

rz(t) = (.1’.)-2 » 25 (D-40)

T Ty

Equations (D-39) and (D-49) give R for this problem,

e T —————————— g ST

The nominal trajectory used
P - 0 0
W(t) = 0 3 A(t)=1600, 25 s Y < 65 (D-41)
From (D=142) - (D-144) we sae that

AA
Ay T m‘“B ¢[1,8] (D-42)
1.6 x 10° (.2)

i el i st o s Ml i B D e K

3
Ao 18X 1002) opy, 2.) (D-43)
Al\ndx ¢

Because it is believed that the method of computing AAmax gives rise to
excessively large values, 1t has been decided to approximate Az and x1 by

Az = A‘ a ] (D-44)

B R P T Y

Y e . e

The choice of 9 is based upon an allowable position deviation

i
from the nominal of 6 X 103 at to and 10' at tf.

-1
(t - t)

ay = | 6000 - 5990 Tpp2- (D-45)

The weighting on Xa and Xg is deduced from permitting 1° of angular
- deviation in flight; i.e.,

Qp = 57.3
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I Substituting (D-41), (D-44), (D-45), and (D-46) into (D-36)

- .
: i qlzsinzY 0 -qlzsiny cosy
. 0 q12 0 <:)

! 2 2

01 * -9 siny cosy 0 9 coszw (0-47)
qZZ ,
| O a5
| 0
L 0

| i Although there is no importance attached to terminal deviations in x4 and

I Xgs for reasons of computational simplicity P1 was chosen as

I Pl b Ql(tf) (D-48)
| Equations (D-38), (D-47), and (D-4 give (Py, Oy, Ry).

The second controller Us is parameterized by the weighting matrices

(Pz. Qp» Rz). The matrices (Pa. Qz) differ from (Pl’ Ql) only in that
they are not rotated to conform to the z-coordinate system and no penalty
is accorded to deviations in the altitude coordinate z. As was observed
in Reference 0-3, for the trajectory of interest, no penalty on devia-
tions in the altitude yields a zero gain for altitude perturbations.

To compare system perforinarce with the two guidance laws, the results
of a simple example are instructive. For the guidance law Uy the
weightings (Pl’ Q> Rl) are given in (D-38), (D-47), and (D-48)).

For guidance law Us




q12 0 0
0 ql2 0 (::>
0 0 0
Qz - qzz (D-49)
®
0
L 0_

Pa= Qalte) 3 Rp= Ry

A simple trajectory contained in the (x1. x3) plane was examined;

x1(to) .6 x 10° x(to) = order 10°
Xg(ty) w03 191 Z(t,) = order 109
tolo,tf'a

Some important qualitative features of the system response are shown

in Figure D-2. The trajectory associated with control u, is denoted by
L This figure is not drawn to scale in order that effects attrib-
utable to the difference in controllers can be made more apparent.

A1l of the trajecinries begin at the same point but xpz crosses X, and
terminates below it. The trajectories have the properties which would
be expected from their raspective parformance indices. The guidance

law Uy reduces the magnitude of the error and rata:2s its direction so
that it 1s aligned with the velocity vector. The guidance law u, on the
other hand rotates the error essentially into elevation.

The character of x 2 has one anomaly deserving comment., The matrices
(P2. Qz) attach no penalty to shifts in elevation and so {1t is to be

0-24
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n
i.e., a motion having the same direction but vertically shifted. On

this basis another trajectory denoted by X p appears to be a more

1ikely candidate for 'the trajectory because it is "parallel" and
presumably takes less energy to accomplish. The flaw in this line of
reasoning is that more than "parallel" motion is required 1f the penalty
accorded by (Pz, Qz) is to approach zero. "Parallel" motions with time
translation give rise to positive penalities because of a perceived
error in x. Observe that Uy must "slow" the system before moving into
a"parallel" path. This slowing is accomplished by having xpa Cross X,
and producing an increase in path length thereby. For reasons discussed
aarlfer, this leads to a considerable increase in the energy required
from the guidance law. To “slow" the vehicle, the weakly controllable
mode must be excited and this necessitates an increase in the size of
the actuating signal. For the specific sample trajectory xpz requires
roughly twice the energy required by xpl‘

expected that x 2 would take the form of 4 motion "parallel" to x_;

Table D-1 gives relative performance of uy and Uy at impact for various
initial errors and parameter variations. In every case Uy provided
superi{or performance. Though it {s probably true that Uy is inferior
to other controllers that could have been selected empirically, this
example 1llustrates that the system designer ignores the relative
stability of the system modes at his great risk., Only by explicitly
modifying the performance penalties can the available guidance energy
be allocated in the most appropriate way,

D-1.5 Summar

In tnis section a methodology for synthesizing a guidance law, based
on the Linear Quadratic Regulator theory, and the associated weighting
matrices has been developed. In this formulation the relative con-
trollability of the different system modes enters directly into the
system penalty function. The point of view espoused here differs from

D-26
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Table D-1. Guidance Law Comparison *

Impact Deviations

Guidance AX Ay At AMach
Perturbations Law (ft) _(deg) (sec) (=) _
Initial Uy 652. 3.8 A1 21
downrange Uy -10. 0.9 .09 .16
arror
In1t1‘1 u2 '2773. -609 'c36 -09
altitude uy -151. «2.9 -,33 .19
error

" Density u, a7r. 2.0 .06 -.50

perturbation Uy -3. 0.1 .05 -.50

* Comparison by analysis of the linear response

D-27
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that typically usad in that P and Q are usually constrained to be diagon-
al and equal weightings are assigned to states that are intended to have
equal deviations. [t is the fundamental point of this discussion that
equal penalties do not cause "equal" responses. Indeed, just the oppo-
site is true, Equal weighting on states will tend to preserve relative
responses in closed-loop that the states had in open-loop. Weightings
modified by the relative controllability properties of the states will
tend to counteract this. Though the probiem {s conceptually simpler than
that studied by Skelton, Reference D-4, this procedure is similar in
effect to that of Skelton in that the difficult-to-control directions

are identified and greater emphssis is placed upon them., The closed-
loop controller is expacted to display more uniformity in its response

to initial errors in different directions than would one not employing
the controllability factors.

In addition, the analysis of the controllability illustrates the diffi-
culties associated with any guidance law for this system, and for systems
with similar characteristics, which {s based upon the use of time as the
system variable of evolution.

D-28 ]
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D-2. STATE VARIABLE AS VARIABLE OF EVOLUTION

In this section the use of a state variable rather than time as the
variable of evolution of the system is considered. The motivation for
this approach is manifold. Historically it was observed that a reduc-
tion in the number of states carried in the solution of the matrix
Riccati equation reduces significantly the time requirements for target-
ing the optimal control guidance law. Another concern in the case of
a maneuvering reentry vehicle is the uncertainty in the time to begin the
process. Clearly, the use of a state variable for the independent
variable provides benefits in the above areas. Previous studies, prim-
arily motivated by the above considerations, found that performance was
improved through the use of a state variable rather than time. The
reason for the improvement 1s that when time is used for the variable
of evolution the controller not only tries to control the state variables
to follow a space curve but also tries to control the rate at which the
space curve {s traversed. Such control applies some of the resources to
the control of the least important part of the problem, in this case the
time, rather than concentrating on the most important part of the prob-
lem, the steering of the vehicle along the desired space curve. For
example, suppose

xp(to) " & where &1 satisfies

xlty) = &y 3ty >t

i.a. because of clock errors in the vehicle, the control process begins

on the desired trajectory but with a time error of (tl-to) seconds. The
LQ controller using 0-6 and D-12, however, perceives this time error as

a state error and tries to remove it. It thus overcontrols the vehicle

trying to eliminate errors that are of no importance. Similar behavior

occurs if the aerodynamic drag is greater than the nominal.
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D=2.1 System Equations

The basic problem of order reduction by change of independent variable
can be posed in the following way. Let the systam dynamics be described
by the nonlinear differential equation (D-3) with the perturbation var-
jables defined as in (D-5). '

Suppose that Xn and xp are both such that their first component is mono-
tone increasing; 1.e.,

xpl(tl) < xpl{tz)
xnl(tl) < xnl(tz) for t, > tl

Since Xn and x_. are continuously differentiable, eithar one could be used
in place of time as an independent variable.

Consider first Xn1 From Equation D=3

d X, Flxp up) w (x0.) (0-50)

d Xn1 flixn,unl)

The 1inear variational model is obtained from (D-50) by perturbing Xp
and U, slightly and equating first order terms. Note that only the num-
arator of fr is perturbed and not the denominator. B8ecause this does not
yield the gradient of fr' the associated variational equation 1s non-

degenerate; 1.e., even though

f 1" 1 (D-51)

N i hnie e o
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it 1s stil1l true that

d Xo
d Xn2

f O

: Carrying out the usual variational arguments on (D-50), a 1inear evolu-
Q tional equation for x as a function of x;, can be obtained and the stan-
dard control problems solved. Note, however, this design problem takes
place in n-space if n is the dimension of x

pb
By contrast if xp1 {s used as an independent var{iable, the problem
becomes conceptually more complicated. There is an ensemble of functions

{X.} s the elements of which are parametrically dependent upon the per-
turbations from nominal of the system dynamics. [f the specific x

N

P
realized by the vehicle ware known a priori, this would create no es- ‘
sential difficulty. Unfortunately, this knowledge would violate system 4

causality and may be ruled out immediately. Furthermore, the one
rationale for using xpl as an independent variable is to aliminate the ;
explicit time dependence of the perturbed trajectory and the control, f
With no measure of absolute time, there is no way to calculate X from
and consequently no way to compute x.

*p
One way to avoid the problem of loss of time {nformation is to generate
a pseudo time variable. Suppose at time tys xpl(tl) is observed. From
[ this information alone t1 can not be computed because xl(tl) and hence

xnl(tl) are not known. It is possible, however, to estimate t, by t,*

where tl* satisfies

Xy (8% = %5 (t)) i

- e e e e e

That is, the first state variable is posited to be observed without
error, and the nominal values of the other variables inferred from this !
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gbservation,
If |t1* =t s sman

xnl(tl*) - xnl(tl) + (tl* - tl) fl(xn(tl) un(tl)) (D~53)
From (D-5), (D-52), and (D-53)

Anat) (6"t Filxg(8)) up(Ey)) = xyy (8) + % (¢y)

or (D-54)

) g 8
(t"t) = I e, T Ty )

The time shift inharent in making the identification shown in (D-54) 1s
proportional to the unacknowledged error in the first component in the
state vector. Thus, trajectory errors become time errors under (D-54).
The time anomaly influences the perceived vehicle dynamics. The vehicle
controller using xp1 as an independent variable observes ervors in a new
coordinate frame X whare

xp(ty) ® x () = x (€% (D-55)

P

Obviously
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3 LOGICON

as the controller can not identify first édmponent errors, [f only first
order terms are retained, it follows that

x"(tl) - xp(tl) - (xn(tl) + (tl*'tl)f(xn’un))

' 1
f x(t) 1
il = xy(ty) = % (ty) - 7IET fx,u,) (D-56) E
a X ]
kS 1 1
L s x(t,) »—f (x .un) o
[ 1 ¢ n .

i 1

i Equation (D-56) shows the aliasing of time errors into state errors 1in x.. ﬂ
»f Errors in the first state component of the system are unmeasurable, but
! they are reflected in the perceived errors in the other components at _
' the state vector. |

D-2.2 Vehicle Dynamics in the Perceived Reference Frame
The vector X in (D-56) 1s the perceived error state of the system. To

i; provide adequate regulation of this error, its equation of evolution must
- be derived. From (D-3) 1t follows that

3 dle (e = (Flxpug) + 25 x o+ 2L ujae
- af, of, (0-57) %
) | d( xPl(t)) = (fl Yaxe Xt oaT ujdt ?
= i
;f Consequently ‘ {
: f af oy 1
: dx (t) (f * Bxl X+ au U) 1
T by - 3, |
*p1't X 1 L |
pl pl (1 i Sy X - F. U)




i
|
1

where terms of order x2 and u2 and «u have- been neglected.
ae) 1ot £, e £01
dxpl(t) 1 ax f ax . u fl u
dxn
+f -
r axpl
Denote
af of
L a L e
IX Fr 'au Gr
From their definition it follows that
A T A S
r '?1 ax g2 X
1
6 oak 2 L £
r 1 9 f% au
and thus
dx
dx(t n
= FX+Gu+f -
xpl t r r r axpl
The last term in (D-59) can be simplified;
dxn = f(xn’un) :-f—- (1 -.L..E..flx _l_a_....fl u)
dxp1 ffxp,up7' fl fiax f du

D-34
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and
dx 3 fi 3 f
— ]

—mnmenans. W - f ——
dx Fpx + Gru ) (3x TV
pl fl

Now consider the change of variable indicated in (D-56)

) (D-60)

& dx d
Hibl dxpl dx

” (x,f.) (D-61)

The first term of (D<61) 1s given in (D-60)., The second term can be
found by observing
dx du
d - n n -
& Ffrae *S o (0-62)

" Fpf * G,

d x

Bl = 1) (0-63)

whare only zero'th order terms in the expansions have been retained in
(D-62) and (D-63). Thus

S-S f)= fr i M) (F.f +Gu ) (D-64)
d X0l ( 1T axpl ?I r r'n

Substituting (D=-64) and D-60) into (D-61)

dxr . X fr afl af

1
T = FL(x = xyf) +Guu -y -7%) - T (s * =304 - fraxs
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From its defining equation it is apparent'that the first row of Fr and
the first row of G, are zero. From (0-60)

—a--.-_-—";1 . . 1?-1 (ax 1 X + —‘aul U)
Substituting this into (D-65)
dxr
Tx_pl = Frxr +Gr,ur (D=66)
‘.’ where
ii . Xy
y Up Ut g T (D-67)

Note that the system equation given by (D-66) is degenerate bacause
X.4 *0,
rl

The interpretation of (xr’“r) is avident from Figure D-3. The controller
has no measurement of absolute time. By assuming that xp1 " Xa1e it ;
concludes that t = t*, Actually

LY -t o

p-:hl l—'x

Not realizing this error means that at time t !

. Xy i
; u = un(t ) = u, * =g

!
i xp(t)
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Note that even if
Ji s b
. xp(t) z xn(t )

up(t) #uq(t)

s To avaid penalizing control deviations that are due only to absolute time
translations in the trajectory variables, define u. as a perturbation
from un(t*); i.e.,

; up(t) = uplt) - up(e¥)
? X

. un(t) +Uu -~ un(t) . -;ibn
K X1 .
Y - f; un

This is identical with (D-67)

In the perceived coordinate system the error is Xp and the actuating
signal 1s U With (D-66) we are now in a position to pose to a
quadratic regulator problem.

l_: g

D-2.3 Quadratic Regulators

Using (D-66) as the dynamic model, a quadratic regulation problem can
be delineated. Define

WINPT P auA i e Ly e L am ee o e

' pr tf)
Jo# ok (te)P xr(tf) +‘/r(xr'0rxr + “r'Rr”r)dxpl (D-68)
1] *of %o
1
b
33
D-38
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The cost function J measures errors in the perceived coordinate system.
The error vector X, can be considered to evolve in R"'1 since Xpy 2 0.
To facilitate comparison with the original coordinate system, X will be

treated as an n-dimensional vector. Thus Qr is n x n,

T R rye—y——— e

From (D-86)

(0-69)

x
-
[ ]
—
-
x
o S

where

Ny

: As was pointed out in Referance D-2 (pg 5); the problem of minimizing
J in (D-68) 1s identical to that of minimizing

| xpl(tf) j
4 Jon x(te)P x(te) +J/'(x'0x " ROy (0-70) f
xp{to)

1

where
P =T P, 4 Q=T QT,
0-39 i
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It is interesting to observe that Tr {s singular. Indeed

Tt =0

Hence

£ 'Pf = £.'Qf =0
_ The control system which minimizes (D-68) or (D-70) wiil iry to resolve
: the residual error into the fr direction, This rezult {35 not surprising %

when the motivation for selecting Xpy Is recalled.

! Since

it follows that

N From (D-67)

v - __ﬂ
; “r'Rr“r (u F

, -7
! Thus (0-71)

ot s e

-t

] e ! .l... '

Xy té( [x (F) Te'0p Ty f (Ty U "R Ty ) )
0

N I

- 2u'RrunT1x + f1 u'Rru] dt

where Tl = (1, 0, ...0).
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In the time domain the regulator problem becomes somewhat nonclassical
because of the inclusion of cross product terms in the integrand.

In the problem under study here, u. 'Rr_ur is & more reasonable measure
of control power than u‘Rru and so we will say that (D-68) is equivalent
to a regulator problem in the time domain parameterized by matrices.

(PLQR) = (T4 Py T QT £y R (0-72)

D-2.4 Changes in the Independent Variable

[t nay happen that xpl {s absolutely continuous and monotone increasing
for orily a portion of the trajectory. 1!t would then be advantageous to
change independent variables at discrete points on the trajectory to

make use of a different trajectory variable with preferable properties.

Let {tit i=], . . . , n) be an increasing sequence of points 1n[to. tf]
and suppose that the independent variable is changed at thase time
paints.*

The simplest class of such changes simply involves renumbering the states
in Xph €90 Xy becomes Xp2 and conversely: f: becomes fl and conversely.
Thus, while xpl is the generic¢ label for the independent variable, x
may correspond to different state variables along the trajectory. A

change in independent variables creates a new matrix Tr(t) at

pl

{xpl(ti)) and consequently ‘r(t) changes discretely at these same time
points:

Xa(tT) =T8T xp T e () (0-73)

¥Sacond order errors are introduced by assuming the change of varfable
{s time based rather than being based on the percefved independent

variable,

D=




Although Tr is singular, (D=73) can be used with an additional hypothesis
to find the change in X The vector x can be decomposed into a compon-
ent along f and a component orthogonal to

x(t) = a(t)f + xs(t)

Let
P"rl’(t)q
il,(n) . X
)
Cleariy
MOSICR RSP

subject to
. LI
Fixglt ) = 0.

Equation (D-73) can be written

) T ()
whare
P
"
f.° qu3
f,.* 1
f b .
r S e .
L.

0-4
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(D-74)

(D=75)

(D-76)

(0-77)
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If 1t assumed that Tr i$ nonsingular, then
ool o~ +
xg{ty) = T Tt )x () (D-78)
Combining (D=-75) and (D-78)
+ #, .+ +
xg(ty7) o T 0(ty ) (8 7) (0-79)

whare

(¢, o0 T (0-80)

0

=3 -

The matrix Tr~ is the correct pseudo1nver§e of Tr in this problem
because

(D-81)

The formalism of dynamic progranming can now be used to produce the
control which minimizes subject to (D-87) and (D-81). The development
is routine and only the result is of interest:

D=3




rpl ® Ry hr err (D=8)

Kol (847 + KU (87)) = PLE) R0 () 0(e s =10 L L L N

Kr(xnl(T)) " Pr

Note that Fr and Gr change discretely at the same points that TP does
because the form of fr changes at these points.

D-2.5 Introductory Examples

To explore the implications of the results presented thus far. and to
f1lustrate the mechanics of the indicated transformations, two simple
examples are usaful. As the first consider the uncontrolled motion in

the plane given by

} afVcos vy, (0-83)
)4 V osin y

where V is constant and y 1s a given function of time, monotonically
increasing and 0 < y « n/2 over the time interval of intevest, For suit.
able initial conditions both components of £ are monotonic and we will
suppose that the motion given by (D-83) is as shown in Figure D=4,
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Suppose X is used as the independent variable. Then

1
r tan v

f =
Fo =0 (D-84)
0 0
T "
-tan v 1

Suppose

diag (O, q%). P, = diag (0, Pg)

Q
Then (see (D-72))

2 tanzY tan y

P=p
2 tan vy 1 (
D-85)

2 tany siny siny
Q= oY | qipy cosy

Note that (V cosY, V sinY) is in the null space of both P and Q and hence
any errors along f will not be penalized by either P or Q.

The method of selection proposea in Appendix D-1.2 attempted to achieve
this same effect by use of the transformation .

¢osy siny

T = (D~86)
-siny cosy
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As shown in Appendix 0-1.2, Equations D-26 and D-27, this gives normali-
zed values for P and Q of

[
2 1 -coty
P.=p
LI -coty cotly
[ .2
2 sin"y -siny cosy
Q = Q9 2
w -siny cosy  cos®y

Comparing (D-85) and (D-87)

P=p, tanzy(tf)
(D-88)
Q=Q,

Thus the two methods provide essentially the same weightings., The dif-
ference in P and Pw is attributable to the difference in the way maximum
error at impact is computed.

A more {nterasting axample is the control praoblem in the plane with no
autopilot dynmamics, Lat

i \V cosy
2 Vel vsiny | =¢ (D-89) j
Y AV

the control is exercised through the acceleration A. [t will be assumed
that A/V {s small {n magnitude and that X and Z are both monotone in- 4
creasing (See Figure D-4)
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The problem is perhaps more easily studied in a rotated coordinate sys-
tem. Let To be a rotation in the plane; i.e.,

T 0
TR 11
0 1
(D-90)
cosg s1nc)
e <;s1nc cosg
where £ is the angle of rotation. Clearly
| . -1. '
Det |TR| 1y Ty Ta
Further if § i{s a differentiable function of time, then
-sing  cosg 0
Ta® & =cosg -sing 0 (D-91)
0 0 0
o ¢ 0
tratele 0 0 (D-92)
0 0 0

Let XnT be the nominal trajectory in the new coordinate system; i.e.,

nr * TR¥, (D-93)
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Then
Xar ® TR*n * TR*p

-1

. _1 “
* TRTR *nr * TRF(TR Xpr) (0-94)

. fT(an' un)

From (D-92) and (D-94)

X, e COSY = xn1251n\

nT1 ,
T-1an - anls1ny + anzcosy (D-95a) |
AN

V cosy
f(T'lan. u) = | v siny (D-95b)
AN

EoXoy + V cOS (5=y)
A/N

Equation (D-96) gfves the dynamics in the new coordinate system. If

& 0, then fT = f, If&= 90, then XnT1 ™ Z. By salecting the correct
rotation variable, one is able to choose either of the original posi-
tion variables in (D~89) as the independent variable for the problem.
Furthermore, time variable choices for §permit sti1l more Flexibility.
Unfortunately, analysis of (D-96) is fairly difficult. To gain insight
into the properties of the system, some interesting special cases will
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be investigated.

Suppose that = 0. Using the first component of Xo1 88 the independent
variable yields.

)
f = tany (D=97)
Av-2 secv,/

From (0=97), Fr and Gr are easily derived.

[0 0 0
Fo =10 0 sacey
0 0 AV=? tany secy )
[0
6. =| O
_v‘z secy

Suppose the nominal valuas for A and V are nearly constant. Then (D=19)
becomes

[0
MO . 0
\I'2 secy
B 0 0
My v-2 secdy |- 0 (D-99)
AV'4 tany secay YV'Z tany secy
- 0 -
] y-2 sec3y
LAV'a tany secy (V'l secy -1)
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e A——T————— e =

B

T T N o — =

and
0 - 0

Q = 0 y2 secay ifrz0

v-2 secy av-d

tany secy (V'1 secy -1)

Clearly states 2 and 3 are controllable while state 1 is not.

{
Suppose next that %= 90. From (D-96) 31
V siny 1
fT wl .V cosy | o fr =[ .coty (D=100) k
v Av'2 csey
Consaquently,
0 0 0 0
F.®]0 0 -csc?y i GoeJ 0 (D-101)
0 0 -Av'2 coty cscy LV'Z ¢scy i
s
3
As before
o |
M0 . 20 l
LV CSCY- 4:
) {
0 " 0 i
=] vBesdy - 0 (D-102) |
-Av-é coty csczy L-? v-2 coty csey 1
r 0 !
' ;
. -V"2 cscay 1

|
L:AV'3 coty cscy (y'l cscy ~-1)
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and
! 0 0 . '
= o V"% escdy if ¢z 90 !
y2 csey A3 coty cscy (v cscy -1) y
The first two transformations are of obvious fnterest. Let us tu'n now
to some time variable relations. Suppose that =y . From (D-96)
, AVl x o, 0 ]
: nTe
1 4
y -1 . " ‘1 2 "1 - :
? frol AV xarp ] femxan (X o AV ) (D-103)
-1 «1,2y-1
AV (*nrz* ATIVE) |
Let
=12
Xprot A VT = 8
Then
& ' .A-z ‘. -s-L-l - V2A.2A-2
aanz A \
Consequently
0 0 0
. - -1 .2 - 2 ‘2 "2 3
0 a2 0 I

R e v, = SRR 5

i 0-52
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[t then follows that

B 0 I
2a=2
« | -véA 2 | |
Mo anIA !
vea2a -2

_—_ L %

~ 0 - - 0 -
‘ . 2,2 G4 2,2 -2 da-?
{ 2,-2 » -4 4
; VEA™* 4 Tx d -2
| |
¢ and 3
| ;
| .
v F 0 0 i
‘e , ]
' Q= |-at o pat A Ve gp0 Y 4 mry Je 07| ey
| 2,42 , -2
. 2, 2,2, -4 2,2 -2
| | Vs veatachy L it g i }

(0-105)

; Observa that Q has the form

;i o ()

PO
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where 02 is 2 x 2. From (D-105)

det Q, viady-d X11 (D-106)

NN

From this we see that states 2 and 3 are controllable, but only barely so.
[f the nominal trajectory were constant (an2 s Q) Q2 would have rank 1.

As a final example, consider the rotation

1 *n
nl

ro

g = tan” (D=107)

P 3

The angle 1{¢ simuly the looh angle toward the targat,

From (D-90) and (D-93) we observe that (see Figure D-d4)

. w. /Sy 2 2
Xty xnios: + xné1n; xn1 * Xg2 (D-108)

XaTa® = xn{1nc + xnaos; 20 (D=109)

From (D-109) and (D-96) 1t then follows that |

pe. Lsin(a-y) (D-110) %
*nT1 i

. Xn i

Ky Vicos (& - v) - o sin (¢ - v) (D-111) |

s A ‘i

i
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Thus
oo )
. (D-112)
Av-la-t
L o 0 0
Fr - 0 0 1 .
-1 - -
. 8an1 3an2 9y
. (0-113)
0
Gr » 0
[ y-ian!

Direact substitution yields

0 0
e=| 0o o (D-114)
0 0

The system given by (D-113) has only one controllable direction.

The loss of controllability evidenced by (D-114) 1s due to the fact that
one position component 1s always zero in the rotated coordinate system.
Only range and flight path angla are measured and these variables are not
enough to control the system. Suppose we augment the state by including
§ as 4 stata variable. Since Xat2 " 0, we find that

inTi' V cos (3 - )
(D-115)

 {
]
o
—_
3
—
£
n
-
—

-
[ ]
<|>
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[f we use Xar1 4 an independent variable

|
foo |- x,pitan (t-v) (D-116)

r
AV-2sec (¢=-v)

Direct calculation yields

) 0 0 0
) - “l,..2(. ) S
| X1 tan(3-y)  wx o sect(5Y) *xypy sec (G-Y)
I 0 Av‘ztan(c-Y)sec(c-Y) Av'ztan(c-v)sec(t-v)
T 0
] !
r ) (D-117)
v sec(5-Y)
From this wa see that
0
MO » 0 "
V'zsec(C-Y)
(0-118)
° ;
My = v'zanflsecs(c-Y) r

AV'Atan(c-y)secz(c-v)

If 3, is small, (F., G.) is controliable in the two coordinatesz and Y.
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D-2.6 Selection of the Independent Variable

In the pravious selections the use of a state variable as the independent
variable is shown to ameliorate the undesired characteristics of the time
based controller. The analysis thus far has not addressed the i{ssue of
selecting the independent variable when in fact several candidates possess

the requisite properties. In this section a means of performing the 3

i : selection is of interest,

Restricting attention to the class of transformations given by (D-90) and
to those values of  for which

xpl( ) = (TT(C )xpl)1 is monotone
and

dx ( ¢)

Ei%{(?') = Xl t) (D-119)

Corresponding to a specific value of { there is a dynamic equation of the
re-entry vehicle, Equation D-119. To synthesize the best ragulator, the !
analyst must select a permissible value of £ 1in such a way as to make the 4
closed-loop system perform in the best possible way, Observe that dif-
ferent system representations are being compared and a germanea "docility"
fndex which would expedite this comparison would be useful.

Before defining a docility index for this system, a few observations are
apropos. Consider the nonlinear system of Equation (D-3) with its per-
turbation equation characterized by the [F, G] matrix of Equation 0-7.

IT the perturbation equation is controllable at time tl’ 1t is well known
that any observed error x(tl) can be eliminated at time tz >t1 with

D-57 ‘
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minimum expenditure of control energy E given by (See Reference D-6)*

E(x(ty)i £y &) = (8, ~t)) fz Lirdr
(0-120)
. ()« ) e (e Whe g )ty
| where
W(ty, ty) @ [tza(tl. t)6(r)6 () &' (¢, 7)dr (D-121)
" !

And #1s the transition matrix associated with F. Let { A 1(tl.ta) } be the
positive aigenvalues of W arrayed in decending order and let {"i(tl' t2))
be the associated set of eigenvectors ordered in conformity with

{ A i(tl' tz) } . Let

f] ny s Hm o0y (g, t) (D-122)
tY

Recall the definition of the controllability matrix Cn as
Cn - [MQ’ Mls ey Mn_l]

M =G (0=123)

" oFM M,

T T S R L

M

* To call t as defined by Equation D-120 the control energy is something
of & misnomer in so far as the (t2 - tl)'l factor gives E units more

akin to power, Still, in this appiication it 15 useful to think of E

as an energy figure with an implicit normalization with respect to the

time increment,

- [pE— ’ . 5
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The system (F, G) is completely controllable 1f the rank of Cn is n. In
this circumstance W (see D-121) is positive and the minimum energy trans-
fer from any initial state to the origin in the interval [tl' t2] is that
given by Equation (D-120) (See Reference D-6)

[t was shown in Reference D-7 that W can be expressed as the sum
{+j+1
- (t,~t))
1 0 M, (t M. ' (¢ D124
N(to' tl) -12 W 1( 0) J ( 0) ( )
vJ=0

[f X, is a unit eigenvector of N(to, tl) with associated eigenvaluel ,

then the energy required to drive x, to the origin is A -1,

Suppose (t1 - to) is small., In the system of interest u is scalar and
M1 are column vectors. Retaining only third order terms

' (tl ~ to)z \ 1
(D-125)
(¢, - t°)3 MMy MMy, 3
K =7t B PMMT o (- t)

The eigenvectors { "1(to’ tl)} of the positive matrix W span R" and can be
found from the algorithm

Nny'Wp = mx n'Hn;n'nal

1 n
]
W nnas=}
N, M, = max n' Wn;
2 2 n a'n
1 "0

(]
»
0

D-59
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Let the associated eigenvalues be labeled Al. Apv + v From.Equation
(D-125) it is clear that for small (tl - to)

LA RSB TR IE
(0-126)

E(n s dt) = ||M || "2t

The energy associated with the next eigenvector n, can be similarly
computed '

n - | ' =1
2 IC(M1 M, MO(M0 Mo) Mo)

(D-127)

. ._]_-_ ' 1 -1,.~4
E(ny, dt) = 5 (ny'MyMy' ny) 7dt

Where C is a normalization constant.

This procedure can be continued, but Equations (D-126) and (D=127) will
suffice for this problem. The divections n and n, can be thought of as
“easy”" and "hard" directions to control, respectively. Since MD = G, the
fact that ny * CMo simply expresses the fact that the first order in-
fluenra of u is in the direction G. [t is more difficult to cause the
system to move in ther12 direction as evidenced by the fact that E

(112. dt) is proportional to dt"4. The energy figure for this latter

direction depends upon FG as well as the time variation of G.

The problem of using these energy figures to compare different {ndepen-
dent variables is made difficult by structural degeneracies in the

(Fr‘ Gr) system (see 0-66). Indeed, since Xpp * 0 (Fr’ Gr) can not be
controllable in the usual sense. Consider the system described by
(D-66). Mimicking the development leading to (D-123), (Fr' Gr) will be
said to be controllable {if rank C _, = n-1;
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The controllability subspace would be all X, orthogonal to (1, 0y ...,0).

The energy content in the directions nland np fn the (xr. “r) coordinate
system follow directly from (D-126) and (D-127)
E(nys dx (&) ) = M || "2 (In, 11%dx (& )] (D-128)
1' "pl ] 1 pl

(ng MMy ') " -4
E(ngs dxyy(€) ) = = |11n;||: lngl11dx, (0)] (D-129)

From (0-128) and (D-129) the energy content is the product of three
types of factors. The first factor 1s the energy associated with a uni¢
perturbation in the ny direction. The second Factor[hﬂla scales the
error with respect to the actual perturbation expected in the indicated
direction. The final factor scales the energy with respect to the in-
crement in the independent variable.

As written, (D-128) and (D-129) are not in a form which facilitates com-
parsion of different values of & . Each of the factors in these equations
depends on g and s{mple scale changes in xpl are translated into apparent
changes in energy content. Yo form a valid basis for comparison, (D-128)
and (D-129) must be expressed as a function of the same error in the time
domain, From (D-3) it {s clear that

dxpl( L) = (TR(C )f(xp.up))ldt (D-1230)

(D-130) provides the factor required to normalize the time interval over
which control 1is accomplished.
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|
; The normalization of the eigenvectors n {s somewhat more subtle, A
,- given inttial error in the X, coordinate system is transformed into 3
, differant appavent error in the Xy (& )-plane. Suppose there is an
initial error x in the X, -plane. This ervor becomes x{ &) under the
‘{ transformation To(&);
. x(§) = Ta(&)x
; It was shown in Reference D-8 that the perceived error when xpl( &) is
& used 45 tha variable of evolution is
R
i
Fl
;’ Xl &) Tt-(xpl( Gl 8)x (0-131)
!
-
; wha e
B
....;i
¥t
;3 0 0 0
u% -fra
y‘» T" " .f I (D 13'_‘)
; l rd -lde
I ‘ :
i .
oy
.|
An initial error x gfves rise to an indicated ervor x (&) of the follow-
& ; ing form :
| n-1 ,-2
" n'T T.X :
- x.(&) -2 L.r R Ny (b-133) '
. Hn‘“‘ ]
) el {
LI i .
" The coefficients of the decomposition of the error vector given above E
measure the reiative size of sensad errors in the different coordinate i
D=6y !
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systems. In the problem under study here x is not known a priori and
will be considered to be a random variable. In this case the relative
sizes of the initial errors in the X coordinate system will be

I nill '||51'Tr(”p1(c NTREE)IxMG 121, 44y nel (D-134)
where 8‘ is a unit vector in the " direction,
Combining Equations (D-128), (0-129), (D-130) and (D-134)

+ - -2 ‘2 ] 2 -2
E(nys dxy) = 1M ]! [(TRf)l] 118,'T T [1%at
(0-135)

E(ngidnyy) = 4 ( B,'MM,08,)"0 [(TRF)I]‘“IIsZTrrRxnzdt"‘

For convenience let E(n1;dxp1) - a dt~21*2 ynare a, 1s defined above.
With the anergy content of arrors in the " directions given by (D-135),
a scalar valued measure of system docility would be a useful intermediary
for comparing the relative merits of different values of C. Obviously {f
there existed a value of § say &* which minimized ay uniformly,

ag(G¥)2min a (C)s 121, .0y 0=l
4
then $* would yield the best possible choice for xpl(c). Unfortunately,

a uniformly best value of Swill seldom exist, and the analyst must be
content with something less,

The docility index found most suitable for this class of problem is given
by Hi




n-1

;%
: H(G) = E ¢ T c D-136
) {1_1 o )} ( )

¢ where E { }denotes mathematical expectation. That value of Swhich min-
imizas H (&) s said to be locally best choice of §;

. H(&®) = tof K (¢) (0-137)

i 3

E; Since a, cannot be made uniformly small by selection of &, the axpecta- i

C tion of the product of the a's 1s made small, Note that for & = co i
» the controllability subspace of (Fr' Gr) is of dimension less than n-1,

# and H (§ = Co) = », [t {s interesting to note that H (&) bears close

kinship with measures of controllability proposed in Keterences U=Y and
0-10 which use det N'l to induce a controllability ordering on the set of
admissible conrollers., Of course, the normalizations involved in deriv-
ing (D~136) makes the final criterion somewhat diffarent,

P P e ¥

It has been shown above that {f Itz - t1| 1s small and u is scalar valued,

Elnys ts &) may Ity - ] 2(1-1), higher order terms;

e Y YT T -

(D-137)
i‘l. e N !

The equations for the individuala, are given in the Appendix (see D-135).

(D=137) indicates that there is a natural decomposition of the state
space into a set of orthogonal directions characterized by the difficulty
with which initial errors along each of the directions can be eliminated.
For example an error in the 'easy' direction, nys can be eradicated by an
actuating signal expending energy proportional to Itz - t1|'2. Observe
that as the time interva® over which control is accomplished decreases,
the amplitude of the actuating signal {s increased. The asymptotic

L R T AT R P e . e m e s o
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behavior of E represents the confluence of these antithetical limits,

In (D-137) the time factor |t2 - tIIk is a fixed scaling, but the sat
{a,} gives a local indication of the systems ability to steer out errors.
Because only local energy figures have been derived, the relative merits
of different systems would be expected to vary with time. The way in
which these sets are used to form a performance index depends upon the
specific objective envisioned for the vehicle. An example of such an
index is given in the following section,

Different independent variables, or equivalently different choices of §,
give rise to different behavioral characteristics for the vehicle in the
coordinate system associated with the regulator. To put the problem of
selecting the best value of Son a rational basis, some criterion of
choice {s required. In the Appendix, one such criterion is discussed.
In 11eu of trying to minimize the individual valuas of the a, in (0-137)
a function H {s defined as follows:*

n-1

H(G) = T a(8) (D-138)
{=1

This function orders the set of permissible independent variables. The
value of 5 1s sought which minimizes H:

H(g®*) = 12f (&) (D=139)

*As indicated earlier E{nai(c W 1s used when x(tl) 1s random.
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Note the ja } are coefficients which charaq;er1ze the energy content of a
class of errors in (n-1) orthogonal directions. ~In the unlikely event
that there is a value of § which minimizes these enerqy coefficients un-
iformly, this value of Swould be that indicated by (D-139). A more typ-
ical situation would be one in which improvement in performance in one
direction carries with it a concomitant degradation in performance in one
or more of the other directions. The index H provides an ordering of
possible independent variables in this more common circumstance satisfying
some but not all of the desirata used by Muller and Weber in Reference 0-9
to delineate a measure of the quality of controllability.

To illustrate these notions consider the dynamics model of a re-entry
vehicle whose primary motion is confined to the X-Z plane as in (D-89).
Obgserve that (D-89) is a very simple representation of the actual equa-
tion of motion for the vehicle. Neglected are the nonlinearities, sam-
plers, autopilot dynamics, and exogenous influences which affact actual
vehicle motion. The simplification implicit in (D=89) is intentional
since one of the objectives of this study 1s to determine the degres to
which simple analysis models can be used to derive controllers for a come
plicated dynamic system.

The class of transformations of interest in this study are fixed rotations
in the X«Z plane; {.e. {20,

Direct calculation leads to the conclusion that

. Veos(Y-g) 1
Xy (§) = [ Vsin(y-g) v fe tan(Y-¢,) (D-140)
ay-2 Av'zsec(Y-co)

where it has been assumed that xp 1s such that xp1 (&) 1s monotone.
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To find{ai} o the system controllability matrix must first be found. This
matrix is given in (D-123).

Cp = (MyM))

where (see Equation (A-4))

0 0
IO P My - V'asacj(Y-co) (D-141)
vV sec(Y-g) “ie

Using (D-141) it follows that
0
o 0
" "“1"(2) P My -llnall(é) (D-142)

(D=142) requires careful interpretation. The controllable subspace of
the perturbation equation associated with (U-140) can be decomposed into
an "easy" direction, Ny and a "hard" direction N From D89 1t is
avident that the easy diraction 1s associated with an angular error and
the hard direction with a position error. This result is intuitively
appealing since the acceleration acts directly on Yand only indivectly
on posftfon ervors,

To compute the docitity index given by Equation D-138 using the result
given in (D-135) only the appropriate amplitude normalization {s yet to
be determined. (D-131) provides an equation relating the time based
error, x,and the error perceived by the controller xr(c). Substituting
the required gquantities into this equation

0 0 0
xr( L) = ( -slanec(Y-i) cpsYsec(v-c) 0 }Jx (D-143)
<AV “cosgsec(Y-8) AV “singsec(Y-g) 1
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[n the application of interest, the primary initial errors are in posi-
tion since the angular orientation of the vehicle is controlled quite
accurately during boost and freeflight. Suppose, therefore, that the
initial error in the (xn. un) coordinate system is given by

X cosA
X = (62 ) (sinx (0=144)
8y 0

The parameter ) gives the direction of the initial error and the size of
this error has been normalized. The perceived arror resulting is

0
xr(c) . ( sec(Y=-%)sin(A+Y) ) (D=145)
Av'zsec(Y-c) cos(A=5)

Assume that the initial error angle A is uniformly distributed on ([0, 2]
and 1s independent of Y. From (D-134)

llnlll- lav=) sec (Y-&) cos (A-2)

(D-146)
[1"211a lsec (v-2) sin (r=2)]
Substituting these values into the defining equation for H
2,2 9 3
H(g) = ﬁ'%f" (1 +2 sin"(v-8)] sec(v-g) (D-147)

From D«147 1t follows that the best choice of T at time t:1 would be
:-Y(tl)

HE=Y(t,)) = min H (€) (D-148)
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From (D-148) it is clear that the locally best coordinate system in which
{ to control the vehicle is one in which the instrantaneous pnsition is ex-
pressed in the rotated coordinate system shown in Figure D-5§. The in-
-i dependent variable xpl(c*) can be thought of a range variable and the
component of state in which error can be measured can be thought of as
} a pseudo-miss variable. Although (D-148) would appear to suggest that
! good performance could be attained by setting &(t) = Y(t), time variable
rotation is not permitted by the hypotheses which lead to (0-148). The
. rotation angle must be constant throughout the trajectory and as a con-
sequance a judicious choice for& would be that which approximates most
closely the realizaed value of ¥ for that portion of the trajectory of
primary concern. QOn a mission in which terminal miss i{s a prime per-
formance contributor, §=Y, (t,) would appear to be a rational choice.

D-2.7 An Example

To explore some of the nuances of the synthesis procedure presented in
the foregoing sections, a simulation study was performed to test some
of the guidance laws described above on a sophisticated and relatively
complete simulation model of a particular aerodynamically controlled ra-
entry vehicla, There were a number of quastions to which this study gave
at least partial answer. Of most concern were the relative merits of a
time based guidance law and one which used a trajectory variable as the
. variable of evolution. Saecondly, the correspondence of the docility
index given by (D-137) and the observed behavioral qualities of the guid-
| ance law were of intarest. Finally, the general question of the utility
y i of the analysis model, (D-89), in constructing guidance laws was also

‘ under investigation. There are four guidance laws whose behavior has
' been studied in some detail, They aro:
Ut: time §s the independent variable
Ux: downrange position is the independent variable (g= 0)
D- 69
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UZ: altitude is the independent variable (S=n/2)
Uyt Ty (te)

The regulators Ux and UZ are of interest because of their implementational
simplicity. In both cases a directly measured trajectory variable is
used as the independent variable, On the other hand, the independent
variable associated with U, must be computed from measured quantities.
Sti1l U, is of significant interest because 1t locally minimizes H at

the termination of the trajectory. The regulator Ut 1s explicitly time
dependent and {ts performance forms a base of comparison for the other
regulators.

The weighting matrices in the performance indices for the regulators
were selected to penalize each of the regulators similarly for similar
errors, First consider (P, Q, R) in (D=11). The weighting on control
was constant and was essentially given by

Row —— (D-149)
4A max

wheveAAmax is the maximum permissible magnitude of variation of accelera-

tion from its nominal value. The state error weighting took the form

Q(t) = dlagla,F(8)sa,2(8) 0,7 (1)) (0-150)

The state weights were ,

. g 2(t) » —f (0-151)
L (AX1 )max

‘ where the allowable position arror decreased monotonically from the
order of 104 feet at re-entry to the order of 10 feet at impact. The
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31lowable angular deviation was also time variable but was monotonically
increasing, The terminal position weight, P, is given by

P = Q(tf) (D=152)

The weighting matrices for UX' UZ' and U, were defined similarly. In
each case the associated Q was diagonal., Because of the degeneracy of
the state space, q; is {rrelevant and the complete position error is !
weighted by G- For this reason '

1 dr,, (&))" . 2
| Q = (—ﬁr— (0,3,° + g,°1 93°) (D-153) =_

where a4y is given by (D-151) and the first factor in Q; {s time normalqza- N
tion, the other performance weights are

X I(C)

)

(teit))

(D-154)

PC - QC(xpl

(D-153) makes the position and angular error weights in the xr(c) coordi-
nate system compatible with those used in deriving Ut‘ Note that Ux‘ Uz
and U, measure position errgr as & scalar while Ut senses a two dimen-
sfonal position error, The weighting matrices given by (D=149) throuyh
(D~154) provide like waeights to 1ike errors and the influence on perfor-
mance due to time scale distortion is avoided by the “velocity" factor in
(D~153) and (D-154).

To relate the docflity index given in (D-138) to actual vehicle perfor-
mance, a simulation study was undertaken. The vehicle simulation equa- _
tions provided a detailed description of the dynamic structure of an i




i impediment to good performance for the regulators designed here because
! these regulators are based upon a dynamic hypothesis that is deficient
in many respects. Of the simulation results obtained, those from three
i numerical experiements are presented here. In each case the nominal k
- trajectory began with '
5 ﬁ

: x(to) » order \0° feet

actual re-antry vehicle. This comprehensive model actually provided an ;

‘ Z(to) = order 10S feet
. to = Q3 tf v ordar 10 seconds

Y(ty) ell,m/a)s v(t,) e (n/4, n/2]

The three tests are described as follows: )

1) xp(to) - xn(to) « - order of 10° feet, xi(to) = 0 otherwise ?

: ) 3
! 2) Zp(to) Zn(to) order of 10

feat, xi(to) » 0 otherwise
3) No initial error, 0.9 times nominal air density on
[0, te/2] + 1.1 times nominal air density on (te/2, t.l.

Figure D=6 shows the result of the first test. For an initial X perbur-
bation the perpendicular path errors are plotted on a log scale. The
error magnitudes have been normalized, and while the relative errors of
the regulators are accurate, their absolute values have no significance.
All three time independent controllers behave in the way one would expect.
A1l begin with the same trajectory error and in each case *he error builds
up slightly because of autopilot effects. Becausn

A N

hn(to)|<hn(to) “Yo(tedlely (t)) =n/2| (D-155)
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on the trajectory of intergst. one would expect from (D-147) that the
preference ordering of the regulators would initially be Ux first, U,
second and UZ third, This is indeed the case as shown in Figure D=6.
For that part of the trajectory satisfying (D-155) the docility index
provides an ordering in accord with the trajectory tollowing fidelity
of the associated regulator. Although the initial portion of the trajec-
tory is subject to aberrant drag forces and acceleration limits, the
slowly varying control gains tend to reduce sampler and autopilot effects.
: The dynamic equation given by (D-89) {is a fully adequate regulator syn-
E,; thesis model for 90% of the trajectory. The comparison of the time in-
dependent controllers at termination is obscured by sutopilot influences.
Near the end of the trajectory, the ragulator gains are rapidly varying,
and the autopilot has difficulty in providing a faithful reproduction of
_ the required actuating signal. Even here (see Tablae D-2) the comparison
- of U, and U, with U, fs that pradicted on the basis of Equation (D-147).
The former regulators have impact errors that are within the best accur-
acy to be expected while Ux has a somewhat larger arror,

e —————— e+ < T —— = A T, T T e

B T

The performance of Ut as given in Figure D=6 and Table D-2 appears super-
‘A ficially to be incorrcct. Far from causing a diminution of the {nitial
}l error, Ut causes the trajectory following error to {ncrease by an order

g of magnitude. The error of fmpact is inferfor to that obtainable with
= no feedback regulator at all. Another way of comparing Ut with the set
of Ur is in terms of the amount of control used on the trajectory. In a
guidance system using a performance index like (D-11), the regutlator
seeks to use as little control force as possible while simultaneously
maintaining good trajectory following qualities. The magnitude function
|R'1de\1s a measure of the degrae of apprehension with which the regula-
tor views {ts instantaneous state. Thus,
te
wis) = f R G'K X |dt (D-156)

rervr
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Table D-2. Guidance Law Rerformance
Performance Deviations
Closed~)oop : ADR | Error in Flight Time Fugfde
Regulator Paerturbations Ft % of Nominal TTU:TH?
uy Initial Downranae 1572 031 1
Initial Altitude 3199 34 1
Density 329 -4/ l
U, Initial downrange 6.3 .11 1,45 x 107
Initial Altitude 16,2 -,59 5,35 x 107
Density 9.8 - 76 7.0 x W°C
v, Initial Downrange 0.3 17 9.3 x 1077
Lnitia) Altitude . -1y 6,9 x 197
Density 5,V -7 5.7 » lqu.
Uy, Initial Downranye 2.0 =, 15 1,07 .\_m"_"_
Lnitial ALtitude 2.9 -0d b x 107
Density 4.8 -7 5.9 x 10

+ S

Sl i i
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is a measure of disapprobation for the closed-loop vehicle trajectory.
Defining ¥(%)in the obvious way, ¥ provides an indication of how control
intensive each of the ragulators is. The actual value of the actuating
signal was not used as the integrand in (D-156) because saturation in

the actuators tends to dasensitize this index. From table D-2 where

the relative values of y are given, the regulator Ut is seen to use 2
factor of 102 more control than is needed by the time independent con-
trollars. The excassive use of acceleration on the part of Ut is coupled
with trajectory following performance that is approximately 102 worse
than that attained with the Un regulators.

The reason for the conspicuous inferiority of Ve 1ies in the way the
trajectory following problem 1s posed. The time based regulator triaes
not to minimize the true trajectory error, but rather moves to correct
the error measured by x in (D=5). For the test shown in Figure D-6 the
initial X error was such as to initiate re-entry at a point closer to

the target than the nominal starting point. Because the controller has
no way of slowing the vehicle directly, Ut reacts to that portion of the
error that is inherently a time translation by increasing the path length
of the parturbed trajectory. Increasing path length is control aenergy
intensive and tends to cause large arrors normal to the trajectory. This
"time-equivalant" bubble {is characteristic of time based requlators and
18 not present in the rasponse of the modified LQ regulators., Table D-2
indicates that Ut is able to achiave much tighter control over time

of flight than can any of the Up Unfortunately, this attribute is not
of any particular advantage in this mission.

Figure D-7 shows the trajectory bubble for an init{al Z error. Only the
nominal and the Ut trajectory are shown, The time independent controllers
would be indistinguishable on the scale of this drawing. Figure D-7 fis
not shown to exact scale but 1s indicative of qualitative features

shown by the actual vehicle trajectories. As before, a small {nitial
grror {s caused to grow by Ut in order to slow the effective forward
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velocity. As was the case with an initial X error, Ut overcompensates

for the initial time translation and has a perturbed flight time greater
than the nominal value. This timing error {is presumably due to controller
saturation near impact.

The {improvement factors associated with the time independent controllers
are repeated in this example. The {mpact error of Ut {s orders of mag-
nitude greater than that accruing to the alternative regulators. The
improvement in control utilization is again on the order of 100. Although
not shown in Figure D=7, the relative performance of Uys Uy and U, was

in accordance with the predicted on the basis of the docility index H.

The previously encountared difficulty with Ux near impact manifests itself
again. The excellent performance of Uz should be considered to be more a
function of fortuitous circumstance than design,

The final example provides an interesting assessment of the robustness of
the guidance laws studied here., In this simulation there was no initial
error, but the dynamic equation of the vehicle was changed by decreasing
air density by 10% on the first half of the re-entry trajectory and in-
creasing it by 10% on the last half. Ideally, the regulator output should
be nearly zero since there are only slight path following errors created
by the open-loop portion of the guidance law. The three time independent
guidance laws do follow the path quite closely, albeit at a different
rate than does the nominal. The related errors are uniformly less than
10 feet., On the other hand, as shown in Figure D-8, Ut finds the density
variation particularly bewildering., In the low density portion of the
flight a large error builds up as Ut tries to slow the vahicle by in-
creasing path length., When the sign of the density changes, U, must now
{ncrease its speed along the nominal path starting with what is now a
sizable state error. It does this in part by crossing over the nominal
path and impacting the ground short of the target. Because of this ter-
minal maneuver, the factor by which Ut deteriorates performance is loss
than that found in some of the earlier tests.
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One peculiarity of the path flown by Ut is the fact that the time of
flight differs from nominal to a greater degree than do the other regula-
tors. This may be due to the disadvantageous state into which Ut forces
the vehicle midway in the flight. As Table D-2 shows, U usas excessive
amounts of control force. As before Uz and U, are c1ear¥y superior to
Uy

— e e

While not exhaustive, this simulation study 11lustrates some of the be-
havioral anomaliaes of Ut‘ The time independent regulators give perfor-
mance that {s several orders of magnitude superior to that attained by
. Uy A comparison of Uys U; and U, on portions of tha trajectory where
] the neglected vehicle dynamics had the least influence suggests that the
- docility index given by (D-147) {s suitable in this application. Further
study is necassary to resolve certain apparent aberrations in relative

L performance,
; D-2.8 Conclusion

o An aerodynamically controlled re-entry vahicle has dynamic pecularities

! which tend to discourage the use of "linear-quadratic" feedback regulators
\ in guidance, The disadvantageous features of the vehicle stem largely
from its weak controllability. By the simple artifice of using a traj-
actory variable in place of time as the independent variable of avoluiton,
important deficiencies of the LQ regulator are avoided and a robust guid-
ance law produced,

e e v o oo

The selection of this indepandent variable from the available alternatives
is complicated by the often contradictory exigencies of guidance law

B simplicity and the dynamic response of the vehicle. Using a simplified
analysis model, this report provides an index of quality for the closed-

l loop response characteristics of the vehicle. This index is phrased in

! terms of the local energy content associated with perturbations from the
nominal trajectory. In terms of this index it is possible to rank dif-
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ferent choices for an independent variable.

Although the index was selected with a view toward maintaining a reason-
able level of analytical tractab{lity, it is sti1l true that the form of
H precludes the development of a direct algorithm for finding the best
Xp1® Some intuitively appealing choices for an independent variable are
fairly easily compared, and it has been shown that the "natural" indepen-
dent varfabla Z has desirable closed-loop properties. For the trajectory
considared here either Uz or U, would be adequate, The superiority of
these regulators to the classical LQ regulator is readily apparent

both in the fidelity of trajectory following and in the judicious use of
available control resources. The performance of the time based regulator
is 50 poor that it does not appear to be a rational candidata for this
type of re-antry mission.
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. D-3. SELECTION OF THE INDEPENDENT GUIDANCE VARIABLE THROUGH A
;i STATE DEPENDENT ROTATION %
1

f: In the previous section the use of a state variable for the independent
f‘ variable of the controller was examined. In the analysis it was found {
[ that the transformation from a time based system to a system based on
any monotonic stata variable avoids the undesirable performance of the
time based system and a docility index was derived which provides a
basis of comparison among the state variables in order that one might

be selacted over the others.

The docility index and simulation results indicated that the Yocally best
! choice for the angle of rotation which definas the independent variable
{s the instantaneous flight path angle. An important restriction on the
previous appendix 1s that the coordinate system {n which the regulator
operatad was time {nvariant. This leads to cartain ambiguities in the
interpreatation of the docility index. Because local docility is being
A measured, the relative advantagas of different independent variables
g tends to change along the realized trajectory.
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In this appendix the constraint of a time invariant transformation used in
defining the evolutionary variable is removed and independent variables
depending on the instantancous state of the vehicle are considered.

A e
P

D-3.1 Problem Dascription

In this section attention is restricted to the class of systems character-
1zed by (D-119). A rather subtle difficulty emanates from a study of the j
implications of (D-119). Corresponding to differant choices for § there
j are different vehicle descriptions given by (D-119) and as a consequence ]
;}} different regulators given by (D-68). To provide a guidance law which {
yields the best vehicle performance the analyst should select that coord- }
E) inate system (value of §) in which the vehicle 1s most amenable to
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control (most docile). To facilitate comparison of different choices

of § & scaler valued, Tocal docility index was defined in Appendix D-2.
If the perturbation model [F(&),G(Z)] associated with (11) is controll-
able it 1s well known that a state error can be eliminated in the "time"
1nterva1[xp1(t1).xpl(taﬂ with minimum expenditure of control power P
given by xpl(tz)

P(Xr(xpl(tl)ut‘-tz) . ("pl(tZ)"‘pl(tl».l / Uz(xpl)dxpl
x .+ (ty)
pittl
(D-157)

[t was further shown in Section D=2 that {f ltz-tll is small, there is a
natural basi{s for the system state space of the perturbation equation
associated with (D-119) {n,i 1=1, . . ., n-1} such that

Pings tyoty) Mo lty = ty] "2 qa1yiiiina (D-158)
The sequence {uiai-l...‘.n-l} measures'thb anergy content in trajectory
errors in different directions in the state space. The most docile
systam would be one which took as little control énergy to control as
possible. It is usually impossible to uniformly minimize the 8y both

"because of their complicated dependence on g, and because of their
dependence on xr(xpl(tl))' Since this latter quantity is often best
thought of as being random, the docility index found most expedient in
Section D=2 {s given by

ne}
H(s) = E {ITa,(S)} (D-159)
{s]

The locally best choice of & 1s that which mimimizes H(%)

H(&*) = inf H(Z) (D-160)
4
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At this point in the development presented previously certain difficulties
arose. The choice of § rationalized by (D-160) yields that transformation
which gives the locally most docile system equations. Unfortunately the
locally optimal value of ¢ changes as the vehicle moves along 1ts path. E
Sinca 5§ was initially constrained to be a constant, the values of &
} studied were chosen with the value of Z* in (D=-160) used only as a loose
} indication of the most advantageous choices for §. It is the intent of
this appendix to present the results of a study in which the performance of
regulator derived on the basis of continuously using the "locally optimal" -
coordinate system is explored. This {nvolves some substantial changes in ! .
the avaluation of H since the "locally optimal" coordinate system {s both
time variable and trajectory dependant,

D-3.2 A Locally Bast Coordinate System

To il1lustrate the notions described above, consider the simple dynamic ,
a 1 model of (D-89). As is the case in appendix D-2 the class of transforma- [
: tions of interest in this study are rotations in the X-Z plane given by

, (D~90). In contrast, howaver, in this appendixz will be permitted to be
L a differentiable function of time. Diract calculation yields the
f‘ ' dynamic aquation of the vehicle in the transformed coordinate system

g : z Xnp * Veos € -Y)

ip(w .| - éxnl-v.sec (€ =Y) (0-161)
AV =1

- whare ; must ba such that xpl(t) is monotona,

Previously a similar class of transformations were considered with the

important restriction that{ ba constant. To facilitata comparisons among |

various possible selections for &, suppose that che trajectory error at }

time t, 1s given by !
|




COS A
x(tl) a € ( sinA) (D-162)
§
where ) is & random variable uniformly distributed on [0.2n], and 3
is uncorrelated with A and satisfies

e

E(§) = 0; E(g%) »ry (D-163)

ke,

The form of x(tl) is easily rationalized. A position error of amplitude

¢ exists in the (X-Z) plane in a direction characterized by A. Au error

in f1ight path anglae also exists at time £y The relative amplitudes of
the position and angular error are quantified by Ly

It {5 important to note that a given error in a time based model at the
vehicle will appear as a different error in the coordinate system X pe The ‘
most obvious reason for this is the fact that no perturbstion can be
perceived in the direction of indepandent varaible Xp)® Hence, there is
an aliasing of errors when different coordinant systems are compared. In
order that H provide a comparison of docility for different vehicle des-
criptions, a common initial perturbation is a requisite.

S S o
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The choice of x(t1) given by (D-162) generalizes that used previously
slightly. Direct calculation as suggested in this reference yields

2 R"2 2 .
HG =5 )me® g~ [E) + S sec (Y-5,)(l+sec (Y-:o)) (D-164)

1,8

where R=A™*Y,

e Pt tenan §

The contribution of'z‘.Y to docility is independent of Co as would be expec-
ted since vis left invariant by the transformation TR. The pesition come
ponent can be minimized by selecting Co- Y. Then

P S PO PSP Pl Lot
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2,2 2,-4 '
H(Es=Y) = 531- [?Y + A—%—f] (Db-165)
While the substitution of CO-Y in (D-164) is appealing, it violates the 3

constraint thatg be constant. Hence (D-165) could be satisfied at a
single point on the trajectory, but it could not hold uniformly. Since
tarminal miss is an important performance contributor, an attractive can-
didate guidance law sould be one which was locally most docile near im-
pact; 1.e.5q v (t,g). Such a guidance law would tend to be less favor-
able in the early stages of re-entry.

I

e oz o

Because of the allure of the trajectory dependent rotation v Yp. the
appendix outlines the calculation of H(s - Yp). This calculation 1s made
difficult because of both the time variable and stochastic nature of the
sample of paths of §. To compute the docility index forg = y_, observe

P
that from (D-161)

j -1 ‘
) AV Xp2 * v ﬂ

v -1
ol A Ty (D-166) ]

av-l

: In (D~166) and the aquations which follow, the dependence of the varifable i
i on& will be suppressed since only the single transformation TR(C =Y ) is i
i being considered. Under the usual monotonicity assumptions, it follows :
. that |
g 1 \f
| gfﬁ- ~Iy (0-167) |
- - A - - i
. xp1 nl fr |
) at |
:
‘ 0~87 :
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-1,2 .
where A« X2 + A 1V . To compute the performance of the regulator assoc-
iated with (D-166), the dynamic equation of the perturbation variables
must be computed (See D-66)

‘T
a-x—p-i- b Frxr + Grur
where
F o Of LG . af,

r r =
b) u
X Xn.u“) U xn. n

Returning to (D-167) and noting that A is the scalar actuating signal

o o 0 0
N e ~2 PO <2,,2,-2
Fow (a7t %08 0 ] s e kg AT (D-168)
0 a2 g NCTING

To compute the docility index H, the controllability matrix of (Fr'Gr)
must first be avaluated. As is well known, the controllability matrix

Cn is given by

C2 ) l:MO‘MI

M0 =G, (D~-169)

Meep = FM+ My

Clearly the system described by (D-167) cannot be controllable in the
usual sense since 1ts first coordinate is degenerate. For the purpose
of this study. the system (D-167) will be said to be controllable if the
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space orthoginal to (1,0,0) 1s in the controllability subspace.
It was shown in previously that if xpl(ta) -xpl(tl) . dxp1 is small

P(x(t;)idt) = dx 1'1 x'(t,) N'l(tl.tz)x(fl)

p

where

W(tpatp) s o —Bh () My(t)
1 1-0 111 (1+3+1)
=0

For small dx 1 it was further shown that there is a natural decomposition
of the controllability subspace into directions which difter in their
power content. Specifically if

n -1
1= M°||M°H

then

P ("1 dxy;) =||M°||‘2 dxpl'z (0-170)

Or if C is such as o makellnzﬂ = ] and

= - -1
then

. 1 ) ‘ -1 -4 .
P (N, dxpl) o | ('12 My M, na) dxp1 (D-171)
Since the derivation of (D-170) and (D-171) is contained in Appendix D-2,
1t will not be repeated. It might, however, be useful to review the
intuitive meaning of these relations. Comparing (D~170) and (D-171), it
is ¢lear that errors in the " direction require far less control energy

0-89
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for their eradication than do e.rors in th‘en2 direction. The reason for
this 1s quickly discernibla. The "easy" d1rect1onn1 1s seen to be along
Gr’ the direction of direct influence of the actuating signal U, in (D=67).
The "hard" d1rect1onn2 is orthoginal to Gr' For the controller to reach
an error in then, direction, 1t must work through the system dynamics

(See the Fr and G, terms in (D-169). Since the 2 direction can only be
influenced through the "low pass" intermediary of the system equation
(0-166), the power required to eliminate the n, error in a short time o)
interval becomes quite large. :

From (D«170) and (D~171) 1t follows directly that

0 0 '

. -2,1/2 . A -2,1/2 -1 :
-1 -
X 1 vy

nl
(0-172)

Equation (D=172) has a rather interesting but subtle interpratation.

From (D-93) 1t follows that xp2 is a position variable and x 3 {s flight
path angle. Because Xn1 {s large over most of the trajectory, (D-172) in-
dicates that a position error is "easy" to corract while an error in
flight path angle 1s "hard". This is counter-intuitive because (D-89)
shows that an acceleration acts directly on flight path angle, and indeed
if ¢ were constant, the ragulator always finds Y to be the easy variable
to control, The reason for this anomalous behavioral charactaeristic lies )
in the fact that the coordinate system defined by TR {s now influenced by
the controller. The punctilious response induced by J results in the |
curious relationship of n, and n,. j

To compute the power figures given in (D-170) and (0-171), note that
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0
My o -x, AR (0-173)
a2y25-2
If we assume that A and V are slowly varying and Xn1 {s large
0
Mo | -Alvo(at iy 2atix 2 (0-174)
2 Ay etk
Substituting (D=172) = (D-174) into (D-170) and (D=171) yields
P(nI; dxpl) . xnl.z AZV:?‘A2 (dt)'z (0-175)

. L1 22, 2,2 gqpye3

where it has been notad that dxp1 = Av-lagt.

(D=175) gives the power content of unit errors in then1 andnb directions.
Because a given initial error will be transformed by T(% ) into a dif-
ferent arror in the X = coordinate system, an amplitude normalization is
required. It can be shown directly that if3 "5y @ constant, then

0 0 0

%a(8,) = -sinysec (Y-%)) cos ¥ sec (Y-g ) 0 |x

2

-AV'zcos;° S°C(Y'Eo) -AV” s1nc°sec(y-c°) 1

(D-176)
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When L=, things are more complex. Note first that 1f1b :*h

dx, = dTp(g) X, + Te(&) dx, (0-177)

Suppose the errn: at time t1 is given by

LosA
X weg sec (0-178)

where E<<1. From (D-177) and (D-178), the errcr in the rotated coordin-
ate system x(%) becomes

EXpa * €08 (A-Y)

() = ¢ ngn1+sin(hv)

To raflect this error into the X coordinate system note that

Xo ® Th x(%)
where
0 0 0 !
* Tr . 'fPZ l 0 |
L T B ,




MHence

0

r

X, =€ -xMA'l( EXp2 ¥ cos()‘-Y))-axm + sec(A=y) (0-179)

A (Expp * cos (A~Y))+ €

By way of comparison, if C-Qo.

0
Xp(8y) ® sec (v-5)) sin (A-y)
Av-2 sec(v-:o) cos (x-co) +E
To determine the components of xr in thenh andnb directions, note that

if xn1>>1

! =
Ny Xp =€ Ko (D-180)

-1

“2. Xo "€ X 0 sin (A=) (D-181)

Let (D-180) and (D-181) be tha amplitudes of the arrors in the " and n,
directions respectively. Suppose further that A is uniformly distributed
on [0,27], that A1s uncorrelated with& and that
TR,
EE =0, EE™ = Ly

Then substituting these relations into (D-159)

-1,-1
2 -2 2x 4
. . C -1 2 .3 =2 AC . ol
HE=Y,) T'PY“+A Xp2)" YT Xy *T i ]
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Direct calculation from (D-159) yields

2,2 2,-4
RRIL ) YN
L 114 Eo) 5 [EY +

sec2 (Y-Co) (1 + s1n2.(Y-€°)ﬂ (0~183)
If A and V are nearly constant, a comparison of system performance using
constant and variable § is made easier if the docility index is parameter-
12ed in terms of R and O (See Figure D~10) Direct calculation yields

2 fy pe2
H(GaYy) = Eb-@:\((z - sec 0)%+ E1—(3cs<:29 + sec?y - %,sec Ocsco]

2,2 -2
H(E=Y,) E-EV—[ZY * 53— sec (Y-8 )(1 + seca(Y-Co))] (D-184)

Comparing (D-164) and (D-184), 1t 1s clear that = v

shows an improvement
over § = 50 on the order of va.

P

The result given in (D=-184) ts initially rather surprising. As expected
[ Yp {s superior to any constant value for 5 when H is considered over
the whole trajectory. Still the improvement factor is quite large on the
trajectories considered. The reason for the pronounced enhancement of
regulator porfoﬁmance 11es in the way errors are measured when & is
trajectory dependent. For now suffice it to say that letting ¢ = g

adds a new degree of flexibility to the regulator given by (D-68). To
see this observe that the analyst studying the performance of the regu-
lator associated with ¢ = co may select % to provide good performance

on one segment of the trajectory. Still, once % 1s chosen, system
behavior is circumscribed by the restrictions inherent in the fixed coor-

dinate system. In contrast, & = Yp {s not fixed initially and in fact
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will change as a function of trajectory errors. More fundamentaly, Y is
a controilable quantity. Therefore, when C-Yp the regulator can actually
control the coordinate system in which errors are measured. The way in
which the regulator utilizes the pliancy of the coordinate system is
rather cunning.

i b b i
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APPENDIX E
ADDITIONAL STEERING LAW TOPICS

: In this appendix, two topics related to the general problem of development
L of steering laws for an aerodynamically-controlled reentry vehicle are
considered,

In Section E-1, the influence of autopilot states in the caleculation of o
controller gains calculated using the LQ ragulator formulation is examined. '
This analysis is motivated by the potential reduction in model size
achievable 1f the infiuance of the autopilot states is weak.

In Section £-2, cartain aspects of imperfect state estimates and their

relationship to the LQ regulator used for the steering law {(or controller)
- are examined. This analysis is motivated by the realization that the on-
board sensurs are imperfect and indeed can also experience failures.

E-1, INFLUENCE OF AUTOPILOT STATES ON SYSTEM PERFORMANCE

E-1.1  Introduction

Simulation of the nonlinear model of an aerodynamically-controlled reentry
vehicle has indicated a potential source of instability associated with {
the autopilot loops. The LQ regulator portion of the guidance law is i
derived on the premise that the vehicle states are continuously observable !
and the actuating signals vary in response to changes in state. Actually,
guidance is accomplished from sampled observations of stata errors, and if
the guidance Toop gains are too high, unpredicted {nstability can occur.
This problem has proved to be particularly troublesome in the autopilot
loops when autopilot states are included in the guidance law,

Stability margins in the nonlinear model can be significantly improved by
the simple artiface of reducing or eliminating the penalties associated

E-1




with the autopilot errors in the performance index. Small weighting on
autopiiot errors tends to yield small feedback gains and this in turn
minimizes the stability problems created by sampling. Indeed, satisfactory
system performance has been attained by simply setting the autopilot gains
equal to zero,

This latter observation suggests that the dynamic properties of the auto-
pilot may not be essential in the gain calculation for the LQ regulator
guidance law. If the autopilot could be eliminated from the linear vehicle
model, this would simplify considerably the solution of the Riccati equa-
tion which is an intermediate step in the gain calculation. There would be
fewer weightings to be salacted in the performance index and the overall
design problem would be made easier,

This appendix gives the results of a study of the influence of model simpli-
fication on closed-loop performance. The raesults are preliminary in that
only the properties of the 1inear perturbation model are explored. A more
complate analysis will require simulation of the nonlinear vehicle model

to validate the results derived here,

E-~1.2 Model Reduction

Suppose the dynamical equations of the perturbation variables (x,u)
satisfy the linear differential equation

x = F(t)x + G(t)u (E<1)

x(to) " X,

The advanced guidance law is that feedback regutator which minimizes
. te
Jowox(te)' Pe x(te) +f (x‘Qx + u'Ru)dt (E-2)
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The structure of the advanced guidance law -has been explared in many
references (see for example, Reference E-1) and the form of the guidance
law can be given explicitly

u = -R"}g'px (E~3)
subject to
PaoF'P o PF 4 PGRTIGP (8 st oty (E-4)

Although not usually of great significance, the cost J can be evaluatad
for a variety of linear control laws. Denote by U the guidance law
given by

uy = R~ 1g My (E-H)

where M 1is & nonnegative symmetric matrix. From (E-3) the advanced guid-
ance law is given by up.

Let JM be the performance associatud through (E-2) to the control Uy
Suppose that it is possible to write JM in the form

JM(to) - x(to)' PM(to) x(to) (E-8)

for all to s tf. Then

3y, lt . .
-5%5-91 " k(to)' PM(tQ)x(to) *ORPYK R xR (E-7)
From (E-1) and (E-5)

x = (F - GR™1a'M)x (E-8)

E-3
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Differentiating the right side of (E-2) with respect to tyr 1t follows
that

BJM(to)
at

2 = ax(ty)' Qlty) (k) = vt RlEuly)  (E-9)

Combining (E-7) and (E-9)
By = ~(F = GR™IG'M)'Py, - By (F - GRTG'M) - Q - MGR™G'M (E-10)

If we substitute M« P in (E-10)
(F - GR-%6'P) - q - ppGR'le'Pp (E-11)

: - - .1 . ' -
Pp ® =(F = GRT'6'P)'P, = P

Pp(tf) . Pf

Comparing (E-4) and (E-11), 1t is clear that

Pp = P

and as a consequence the performance of the regulator up is given by

Jw x(to)'Px(to). (Re12)

% Thus, in addition to 1ts role in the gain calculation, P {s actually tha
; "cost" matrix as well.

y Supose that M is nearly equal to P; 1.e.

M= P+ &Py |16P|] < < [|P]]

E-4
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: Denote L. &Py the corresponding variation in Py
if Py = P+ &Py (E~13)
S
k From (E-10)
Py = P + 6P
- []

= -(F-arlar (P am)) (P v omy) - (P v opy) (F - aR7ar (P 4 )

» -Q - (P + 8P) GR™1G' (P + 4P)

2 j Using (E-11)

8Py = =(F - GR7IG" (P + 4P)) 6P - &P(F - &R"1a" (p + e))
- P GR1g'gp ) (E-14)

GPM(tf) =0,

To gain insight into the structure of (E-14) consider the following identity.
Let A(t) be defined iy

te :
At) = J(. (eA (t-7) B sA(t'T))dr (E-15) 4

Then ]
tf 4

da(t 3 (P (1) geAlt-T) \y '

$=- = -B +~J/~ 2 (e BG )dt 3

t A

!

d

]

£-5 'j
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LOGICON

%% = B+ A'A 4 AA (E-16)

Comparing (E-14) and (E-16), assuming the coefficient matrices in (E-14)
are nearly constant and using the fact that P + ¢P & P

. tf
- - ‘1 [ . -
SPM(tu) » /C (F GR s P) (to -T)\SP GR.XG'!.SPC-(F - GR lG‘P)’ (ta - T)dl‘ (E-l?)

%

-1
If (F,G) {s controllable, the maximum eigenvalue c'(F - GR76'P) can be

used as a norm of the matrix exponential, Clearly

[16P(tod 11 5 (g = tg) 116R7a" | []ep)| (E-18)

Consequently, a variation in P gives no first order change in P,; 1.e,

Py E-19)
W 0 (E-
M= p

The sensitivity of system performance to changes in gain is zero near
-R'IG'P. Any changes in the system model which ¢reate small changes 1in
gain will cause essentially no change in system performance.

E-6

i i, i

el

T Wy




[

R TR TR s

|

Bal ‘-[ s 4

The small sensitivity to gain changes is important in this application
only 1f we can show that the desired changes in system structure give rise
to small changes in gain. Elimination of the autopilot states changes the
order of the system equations and 1s not a small variation in the usual
sense. Suppose F and G experience perturbations 4F and 4G, resepctively,
The corresponding value of the cost matrix becomes

P8P w ~(F+&F) ' (P+8P)=(P+&P) (F+&F)+(P+8F) (G+6G)R"1(G+6G) ' (P+6P)-Q

Consequently
¢« F-WleP) - FoWHD (e20)
-P (&F - 4GR™IG'P) - (6F - saR”IE'F)'p
SP(tg) = 0
where

F = FroF, G = G+34G, P « P+ gp

The equation for P has the same stability properties as does that for the
P matrix assuciated with the perturbed system. [t follows from (E-20)
that ||&P|| will be small {f ||P(sF - sGR™'G'F)|| is small. One of the
factors is fairly obvious. If &F and $G are small, then G ¥ &, Con-
sequently, &F =~ 5GR'1G"P'15 small if the first variation in the closed-
loop dynamic matrix is small. A small change in the closed-loop system
dynamics will produce a small change in P, but the converse is not as
strong. To gain more insight into the effect of the autopilot states, a

simple example {s useful,




AN EXAMPLE

Suppose we consider a simple trajectory in the plane described
by

X = cosy

Z = siny (E-21)

y=A .
Anw ln(A - AC) :

The variables have the obvious interpretation and a, is the nominal corner
frequency of the acceleration command autopilot. The perturbation equations
associated (E-21) are easily derived and have the form given in (E-1) with

- - o -
0 0 -siny O 0 '
0 0 cosy O 0
F = |0 0 0 1], 6 = 0 (E-22)
| 0 0 0 N I -2, |

Suppose we wish to investigate the influence of the autopilot state. One
way in which the autopilot can be effectively eiiminated i{s to set the
autopilot corner frequency equal to 2y where ay > > 1.




.

Clearly, neither &F nor &G is small,

Let us partition P, F, G, and Q as follows:

Pi, P F.. Fal 0 Q, O
P_[n 12]'F_[n 12]' a-[ ] Q_[u ] (E~24)
Paa P22 Far Fa2 8, 0 0

whare P22’ F22' Gz. etc. are scalars and the other elements are of compatible
dimension. We will assume that weighting Q on state errors provides no
penalty for deviations in autopilot state from nominal. Since the

actuating signal 1s one dimensional, R is scalar and will be denoted by r.,

Expanding (E-4) and noting that P 1s symnatric
6 e

F F,y = F +Lp

21’12 - Uy 12P12

2 (E-25)
G 2

Pia ® -F11Pyy = Pufag = Prafay -

- . . ' b ol
Pop - “F22P22 = ParPra < Fa1'Pyy’ * 1 Py

. 6,°
" - - - - ' _-...._2
P12 ® "P1aF1a = Prafap = Fuy'Pra = Fay'Pap + 5= PpoPs

Let us assume that a, and therefore F22 is large compared to one and

that P12 and P22 are of compariable norm. Then

2
E&_ p. 2 (E-26)

Pog @ =2FppPpn * 22

E-9
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The nontrivial stationary value of P22 is given by

2rF
n 22 ] .2_ -
Poa * =7 (E-27)
2 n

Suppose Pzz differs from the solution given in (E-27) by a small amount
¢. Then

6,2 26,2
. 2 ve) o (<2F,, + =P, )
2Fa(Pap + &) + == (Pyp + €)% w (<2Fyp + 2= Pyy)e

L) 2F22e

From (E-26) then

. “ E_

In (E-28), Fap # 8, and a > Q. The stability properties of (E-28) are
more easily seen if wa use the changa of variable v = te -t Equation
(E-28) becomes

de

& L) -Zdne (E-29)

Equation (E-29) 1s stable thus suggesting that Pss 1s very close to the

value given in (€-27) for all t outside of a small interval containing te

Next, Tet us look at P12 in more detail. Frem (£-25)

Ga

. a «fF! ..—g_ - -
Pra = =(Fiy * (Fpp - == Pyp) 1) P - PyFia (E-30)

E-10
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But

or

Fag = =¥ Pag * =%,

F

Pia * =(F1y = 8 00Pyp = PiyFyp

By assumption anl > > Fil and thus

Prz " %%12 - Piifpe

(E-31)

The stability properties of the equation for P12 in (E-31) are those ex-
hibited by ¢ in (E-29). Consequently,

P11F19
a

P, ™
12 n

(E-32)

We are now in a position to complete the analysis of the P equation by
looking at pll‘ Since F21 = 0,

But

2
: 8
Pir ® =FiiPin - Prafae - Qg t £ PP,

2 2 ]
G 2% PyaFyoFoP
——2 ' - ——r-‘- 11 2 1
— P12t % 2

4

“lg1p

Fia™ "F12P1

*P1

o e Al Adlaates ool

(E-33)
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Consequently

' " - - : - -1 -
e ™ FaaPan - Poafy = O * PpFpet PPy (E-34)

Equation (E-34) is precisely the equation that would result if

e Lt N kit

0 0 0

(E-35)

From the preceeding equations it becomes clear that if the autopilot
corner frequency &, is large,

195511 = 0zH)
n

(E~36)
1

[1Prall = 05H

The 1imiting value of P11 1s that which would be associated with a reduced
order model containing no autopilot dynamics. I we assume that &y > > &,

(Ppdyy O
Pulty) =
0 0
or
[16PI] = otgh) (0. (E-37)
n

From (E=37) {t is evident that the large magnitude variation in F and G
gives rise to a small variation in P, Because of the small closed-Toop
sensitivity to variations in gain (see E-19)), the system performance
will be unaffected by the elimination of the autopilot state in (E-21)

tf the nominal corner frequency a, 1s high,

E-~12
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E-1.3 Conclusions

This section has provided a preliminary analysis of the influence of elim-
ination of autopilot states on closed-1oop system performance. If the
] autopilot dynamics are neglected, cartain stability problems are reduced 3
.‘. and the calculation of the guidance gains is made simpler. Because the {
! | effective order of the system dynamic equation is reduced, the removal of _
: the autopilot does not correspond to a small variation in the [F, G] 1
matrix, Consequently, the usual perturbation arguments can not be used '
to study performance sensitivity. 4

iy The proof that autopilot states are of little importance proceeds in

: two parts. First, it was shown that linear regulators with gains close
to those appropriate for the advanced guidance law have performance that
is indistinguishable from that attained with the correct gain. This is
4 a general property of the advanced guidance law. Small gain errors from
1 whatever sourca have negligible influence on performance.

The next step 1s to show that a change in system order yields a small

change in gain. In contrast to the praceeding sensitivity property, the :
} influence of order reduction makes essential use of the structure of
A (F, G]. Order reduction cauzas a big change in '“& nominal dynamical
] matrices of the linear perturbation model. To show that the ensuing
o

gain change is small, requires more than a sensitivity argument because 1
second and higher order perturbation terms must be retained. One may !
either show that the solutions to (E-20) are small or show directly that ‘
the value of P corresponding to [F, G] is close to that associated with ]
[F, G]. It was shown by example that for motion in the x-z plane, the \
acceleration command autopilot has 1ittle influence on system performance |
if the nominal autopilot corner frequency is high. It is expected that '
a similar conclusion would follow from analysis of the seven dimensional ?
models for motion in RS, )

1
e - ’
. . . . li




Since only the dominant terms in the Riccati equation were retained in
this analysis, it is impossible to state qhant1tat1ve1y how large a, must
be to perm‘t its benign neglect. A more detailed analysis would be neces-
sary to provide this type of information.

E-14 i
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E-2. INFLUENCE OF SENSOR FAILURES ON LQG REGULATORS
£-2.1 Introduction

The solution to the 1inear-quadratic Gaussian (LQG) regulator problem has

a number of attractive features which suggest its use in applications (see
Reference E-2). The synthesis algorithm leads to a l{near feedback regu-
Tator with gain given by the solution to a matrix ordinary differential
equation. The controller is, thus, relatively easy to implement. Of pri-
mary interest in this paper is another idiosyncracy of the LQG regulator;
certainty equivalence. As pointed out by many investigators, the LQG
regulator has a natural decomposition into a f{lter which generates the best
mean-square estimate of the system state and a fixed gain controller inde-
pendent of the observation mechanism. This latter property is desirable

in on-11ne applications because to make the controllar parameters contingent
on the realization of the exogenous influences, would yield a system of un-
acceptable complexity.

This appendix considers a situation of a somewhat more general sort. Speci-
fically, concarn {s centered on the influence of changes in the observation
equation, The motivation for this work was a study of the oparational
characteristics of reentry vehicles., Such systems have continuous sensors;
e.g., an inertial measurement package; and may, at discrete time points,
make additional position measurements using a separate group of sensors,
Particularly these latter measurements are subject to untoward influences
due to both environmental effects and internal failures. It i{s, therefore,
of interest to determine how the regulator should be modified in response

to these events of uncertain occurrence.

There are many excellent papers extolling the virtues and explaining the
1imitations of LQG regulators. This appendix will use the notation con-
ventions of Tse and Reference E-5 whenever possible., Of particular inter-
est is the exploration of the nuances of a supposition of Tse to the effect
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that an optimal requlator will have the cepta1nty equivalence property if
(Reference E-3, pg. 780):

e

1) The conditional mean of the state characterizes the
observation o-field K

R = - P

Sy

2) The conditional mean of the state has the same dynamical
equation as does the state.

FR T ia

NN T T

i 3) The cost is quadratic.

E-2.2 Problem Description

The systam to be controlled and the feedback 1ink will be described by
f linear equations (see Reference E-2):

X®Ax +BU+E0<teT (E-38)
yuCx+8 (E=39) :

where x is the system state, u the actuating signal, and y the observation
3 signal. The signals £ and ¢ are white noise procassas indapendent of each
A other and independent of x(0) where x(0) is Nor (io. £(0)). Fecr reasons
that were explained in the introduction, it is advantageous to generalize
the observation equation (E-39) slightly. Let [ be a discrete set with
elements {tl""' tn} and assume : '

L il g R

= Eg(t) =0 ; E&(t) g(e) = 5(t) 8(t - 7)
: o(t) &(t - t) t ¢!l (E~40)

f('
% Eo(t) =0 E a(t) o(t) =0(t) tmrel
A 0 Otherwise

? The feedback 1ink transmits continuous aggregated observations of the sys-
tem state with white additive noise except for a discrete set of times of
which a higher quality set of observations is transmitted. These latter




observations may differ in type from the former, and C may be discontinuous
on I. The performance index {is quadratic

.
3= E [x'(t) Sx(t)]+f (x'Qx + u'Ru)dt (E-41)
0

where S, Q, and R satisfy the usual hypothesas.

The basic element which distinguishes this problem from that of Tse 1s the
possibility of sensor failure. Let the random process r(t) represent the
mode of operation of the faedback measurement 1ink and suppose C and o
depend upon r; i.e.,

(C(t)y o(t)) = (Cy(t), o,(t)) 1f r(t) = i (E-42)

Thus, tha feedback measurement gain C or the observation noise level @ may
change in some random fashion. The indicator variable r is u finite state
Markov procass characterized for small A by:

1 - pid(t)A +0(a) 1=3,¢t4d1l
Prob (r(t + a) = J|r(t) = 1) = o1d(t)A + 0(a) 143, ¢l
o1j(t)A + 0(a) tel
(E-43)

Llet N = [pid]. To see the implication of (E-42) and (E-43) suppose that

r = | corresponds to normal gperation and r = 2 represents a degraded ob-
sarvation; e.g., oz(t) > el(t) or Cz(t) Cz‘(t) < Cl(t) Cl'(tg. Equation
(E-43) gives a failure "rate" of pra(t) for t ¢ 1. If N(t) =1 fortel,
(E-43) admits the possibility of failure coincident with discrete update.
This could be due to a component overload, or to the fact that a prior
failure only becomes apparent when the updating sensors are interrogated.

E-17
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If the realization of r were known a priori, (E-38) - (E-40) would delineate
the LQG regulator problem. The optimel causal control policy is linear and
Equation (E-38) (formally) generates a Gaussian random process. Under (E-42)
and (E-43), this will no longer be true. Let {;;f‘ te(0, T]} be the ob-
sarvation v~-Finlds at the controller;

] Fprofy(n)y rl)s w0, €]} (-44)

Note that perfact measurement of r is permitted in the feedgpgk 11nk. This
13 an idealization, of course, but this assumption leads to a far more
analytically tractable problem. The basic problem is to find a function
u(t) adapted to F, such that (E-41) is minimized.

e

e,

£-2.3 Solution Algorithm

Bafore considering the control problem, consider first the problem of esti-
| mating x. At first glance this might appear to be a formidable obstacle
because of the random coefficients in the observation equation. Actually
this 1s not the case, Because r(t) is J‘t measurable and a Markov process,
the equations of evolution of the conditional mean take on the form one
would fntuftively expact. A certain amount of tedious calculation yields
the following results: Let

10 = £ {u(o | ) (-45)
Then . 4
R A+ Bu+ Wvy r(t) =4, til :
X(t) = X(t7) + Wy(thv(t); r(t) =4, tel (-46) :
X(0) = %, !
where ]
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o (t) s(t - v)s v} Ty r(t) =

IR

TR

Ev * 03 Eu(t)v'(v) ={o,(t) + Cy{t)s(tIC, ' (t)s t e 1, r(t) = i
l e Otherwise

T

' (E-47)
2(e)C, (t)o, T Ht) vt g T n(t)

ERCFE LI N D A

1 Wy(t) ~{

2736, (8) [ € (00z(e)e (8 + oy (0] THy b e 1 e(e) o

|
‘ (E-48)

B(t) » Ap + XA' - 5Cto, T Gk E b DL r(e) o

w6) = [1- ke ] 2e) 5t et <t (E-49)

£(0) = Ly

Observe that if t § [ tha equation for x "has the same dynamic(s) as the
original process axcept with different driving disturbance" (Reference E-3
py. 780). For t & I, x may have discontinuities, a property not shared by
x. Note that the noise intensity is random in (E-46) both through W and
the covariance of v. Particularly the former depends upon the past history
of r through 1ts dependence on 1. Further, W is not deterministic as was
the case {n (E-2), but it is adapted to :#t.

pupr gy e

Using the argument of Tse in toto it can be shown that

T T
J=E {i'(t) sx(t) +J/. (x'Qx + u'Ru)dt + Te(Su(T) +J/~ QAdr)}
0 0

Sl S

(E-50)

In contrast to the LQG problem, the last two terms in (E-50) are random.
Pecause the last two terms are also unaffected by the control policy, a
control problem of a fairly standard sort results, It is shown in Section
E-2.6 that the optimal quadratic regulator is given by

i . 2t i 5 o e ’s

£E-19 ;'
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u= -R7IB' Kx . (E-51)
with T
3% Rg' K(0) X(0) + P 1(0) + E{Tr(su(T) +J/' Qudr)} (E-52)
0
where
K= -A'K - KA - KBR™IB'K + Q (E-53)
K(T) = s
5 = Np-Dtel (E-54)
p(t™) = Np(t) = t eI
p(T) = 0

where p and ' are vectors with elements
pelpy] s re [y en vy (€-55)

£-2.4 Propertias of the Qptimal Regulatov

The most interesting attribute of the optimal regulator given by (E-51) is
the fact that the certainty equivalence property is preserved in the pre-
sence of sensor failure. The evolutional equations of X satisfy the
dynamical equations of the controlled system almost everywhere, and this
produces the desired result. The resulting closed-loop system does not
have Gaussian solutions because of the multiplicative 1n?luence of the
random process r.

It is interesting to compare the result derived here with that derived in

a closely related problem. In Reference E-4, full state feedback was per-
mitted and consequently x = X. In this reference the times of discontinuity
were not predictable as they are here, Even after factoring out some other
dissimilarities in the statements of the two problems, a fundamental dif-
ference in the solutions remains. The primary reason for this is the fact
that the change in state at points of discontinuity {n Reference E-4 was
"multiplicative"; i.e.,

£-20
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x(t) = Pijx(t') ifr(t) =3, v(t7) =1,
while that of (E-46) is additive. Although the system of Reference E-4
satisfies all of the desirata of Tse, separation in its strongest form,
(E-51) fails. In the referenced problem, the control component of the
optimal regulation policy is independent of the additive noise terms but
depends explicitly on r, and consequently can be seen t0 passess a weaker
form of separation. In both cases the "filter" portion of the regulator
depends upon the exogenous variables.

Though (E-51) is unrelated to sensor reliability, the same is not true of
the performance. Equation (E-52) has a natural decomposition into a state
independent term related to filter performance. The components of this
latter term proportional to E{f} clearly increase as the 1ikelihood of
failure increases. The driving term in the p equation, I, is proportional
to C'C and inversely proportional to o. The Pr(o)(o) component of cost tends
to decrease with improved filter performance. While these terms can not be
expected to cancel, they do provide some measure of compensation.

The structural result given by (E-51) and (E-53) can be generalized weakly
to the case where the parameters of the open-loop sysfém (E-38) vary with r.
Using classical techniques, it can be shown that if = depends upon r, (E-51)
and (E-53) still give the control portion of the optimal regulator. If,
however, (A, B) varies with r, the gain in (E-51) must be made contingent
on r. This effect was observed in the noise-free problem with random jump
parameters,

E-2.5 Conclusion

This appendix has considered the influence of changes in the parameters of
the observation equation on the feedback regulator optimal with respect to
a quadratic performance index. The feedback gains were seen to be unaf-
fected by sensor variability of a specified type. This characteristic

E-21
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has important practical implications because the controller gains are often
stored on a special purpose computer for on-line implementation of the
regulator.

The underlying explanation for the strong separation displayed by the con-
troller 1ies in the passive nature of the lesrning task as perceived by the
controller. This avoids the dual control problem which would arise if r
were not perfectly sensed. As pointed out by Tse in Reference E-3, the
dual control problem will admit no such easy solution as obtained here.

£-2.6 Proof of Equation E-51

The proof of (E-51) follows the standard formalism of dynamic programming.
Let J* (t, x(t), r(t)) be the minimum cost to go;

.
H(EA(E), r(8) = £k (T)sk!(T) +f (x' O + u'Ru)d] %}
t (E-56)

[t is well known that J* satisfies an equation of the Bellman type
0= min ((R*(£)R(t) + u(t)Ru(t))de + E {d*| }) (E-57)
u(t) t
Generalizing Reference E-5 to the vector case
do*(t,x(t); r(t)) = Jyrdt + axdi(t) g Tr(dfd < xqy X )

+0*(t), R(t), r(t)) = O(t,R(t7)) - J% ax(t) (E-58)

where ;c and ax are the continuous and discontinuous parts of x, respect-
ively, From (E-46)

< R ic > = WO W, dt (E-59)
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Substituting (E-58) and (E«59) into (E~57)

min KRR 4 u'Ru + JR(t.x,1)(Ax + Bu) + 3 Tr(d% (t,R,0)W 0,0,

u
0l + 3 oijJ*(t,i(t), 3 iFteél, r(t) =i (E-60)
ming p1dJ*(t.§(t). 3) =, %(t7), 1) iftel, r(t) =i
ud (E-61)
Note (E-61) {s control indepandent.
[f we assume that J* has the form
J¥(t,X,r) = i'Kri +p, (E-62)
then
us R7IBIKE 1FR(E) = (E-63)

Note that u 1n (E-63) 1s used for all t since I {s discrete. Oirect sub-
stitution of (E-62) and (E-63) into (E-60) yields (note g pid(t) =0 if
té¢lI)

Ky = =A'Ky = KA - K,BR'IBK1 FQ5 1wl Nt

K(T) = S _ (E-64)
p=a«Np-rtT
p(T) = 0 (E~65)

where p is a vector with elements Py and the {th element of r is

Ty Tr(KN1 <V, v > Ni) (E-66)

Equation (E-61) has somewhat different properties.
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E{i ;)”(;((t‘) +ax)! Kj(t)(i(t") +Ax) + pijpj(t)} ,
. 3
. u
. )j pu(i'(t‘)KJ(t)i(t') + TrKJ(t)NJ < vy v Wyt PJ(t) -
Since £ p.q(t) = 1, Iftel, :
iy
Ky(t) = Ky(t") (E-67)
N(t)p(t) = p(t7) - (E-68) i
Combining (E~64) - (E-68), L
]
KaoA'K-FKA- KBREEB'K* Qs te 0,7 (E-69) .
{
K(T) = S :
(E-70)

puaNp-Tit¢l
{P(t') = N(t)p(t) + T3 t el
p(T) = 0

um -R"IB'Kx

e am e D B e rdda e e st a e
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APPENDIX F
FLIGHT TEST TRAJECTORY DESIGN BY SIMPLICIAL PIVOTING

F-1. INTRODUCTION

This appendix describes the problem of weapon system flight test trajec~
tory design for the purpose of improving operational system performance
evaluation. It is shown that the observability of the principal reentry
guidance system errors can be substantially enhanced by trajectories
designed for this purpose. These errors are evaluated using a simulated
post flight analysis of the measurements made by the reentry vehicle in-
ertial measurement unit (RIMU) and by radar/camera ground sensors. The
resuit of this evaluation for a fiight test trajectory {s the covariance
matrix of the error in estimating the RIMU error sources. The measure of
improvement provided by a designed trajectory is a weighted functional of
this covariance matrix, where the weight assigned to each error source is
its contribution to the CEP of a candidate operational trajectory. The
search for a reentry trajectory which minimizes this functional and satis-
fies energy, vehicle, and instrumentation constraints is performed with a
simplicial pivoting algorithm., The problem {s solved for each of two
RIMUs. First, the Small Hardened lnertial (gimballed) Platform (SHIP) 1s
considered, and second, the Dormant (strapdown) Inertial Navigation System
(DINS), with laser gyros is considered. The extent of SHIP and DINS ervar
parameter estimation capability during a flight test is derived. The results
show that significant improvement in the observability of SHIP principal
grror parameters can be attained.

The operational weapon system and its RIMU principal performance contribu-
tors are descirbed in Sections 2 and 3 respectively. The flight test
trajectory design problem to improve error source estimation is defined in
Section 4. An approximate solution to this problem is sought by reducing
the number of variables and applying a mechanized algorithm. Section 5
discusses the selection of the simplicial pivoting algorithm to solve this
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reduced problem. Section 6 gives resuts of the trajectory design study by
comparing the parameter estimation realizable with the designed trajec-
tories with that from two candidate flight test trajectories.
summary is given in Section 7.
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F-2. OPERATIONAL SYSTEM DESCRIPTION

The operational system considered consists of an aerodynamically con-
trolled reentry vehicle and a reentry inertial measurement unit (RIMY)
deployed from a Minuteman 11l booster with a NS-20 guidance system. The
NS-20 is modeled with the error sources and error source uncertainties
corresponding to current accuracy estimates. The RIMUs considered here
are the SHIP and the DINS platforms,

At launch, the RIMU 1s assumed coarsely aligned in azimuth and {s aligned
about the level axes using i1ts accelerometers. The RIMU navigates from
launch and is updated by comparisons with the more accurate NS-20.

The reentry navigation systam is initialized at reentry with a state
vector mapped from the estimated state at deployment and navigates through
the reentry phase of the mission,

F-2.1 SHIP Error Model

The SHIP 1s modeled with a total of 93 accelerometer, gyro, gimbal mass
unbalances, and platform compliance errvors. The SHIP platform axes are
aligned to a downrange, crossrange, and up orientation at launch and the
accelerometer and gyro input axes are as shown in Figure F-1,

Accelerometer Error Model

The acceleration error for each accelerometer is modeled by:

BAy = Ky + KyAL + Ko [Ay + Kol + Kysion(Ay + Ky)

2 3 2
+*
KoAy™ * KgAy™ + KipAgA, + K AR + Koo Ay

* iRy AL+ KA

+ KOA0 + BAp + YAO

P
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The coefficients for the error model and thair description are:

K. = bias ’
K1 - scale factor

K. = absolute scale factor
Kd - hysteresis bias shift .
K2 = 1nput axis quadratic nonlinearity »
Ky = cubic nonlinearity -
K;. = pendulous cross axis scale factor
K1° = output cross axis scale factor
- Ky, = OUtput axis quadratic nonlinearity | i
‘ Kaq = input axis quadratic difference !
K. = output cross axis blas ]
B - input axis toward pendulous axis misalignment
y - input axis toward output axis misalignment

and the subscripts (i, p, o) denote the input,pendulous, and output axes of
the accelerometer.

29t omtad whe e 3

. : Gyro Error Model

Cem ol

The drift rate error about the gyro input axis is modeled by:
: 2
O # D¢ + DyAy + DoAg *+ DA + DA + DysAlh,
+D, AA +D A% +D AZ+D AA
1s'1"'s 00’0 $$°S 08 0§

The coefficients of the gy}b error model are:

fixed drift

input axis mass unbalance
output axis mass unbaiance
s spin axis mass unbalance

E D11 compliance

o
-
]

o o
-t
‘ ]

\=J
f

F-5




o
—
]

compliance
compliance
compliance
compliance
compliance

(= = B - J
| I S N

where the subscripts (i, o, s) denote the input, output, and spin axes of
the gyro.

Gimbal Mass Unbalance Model

The gimbal mass unbalances give rise to misalignments about the platform x,
¥y &nd 2z axes of the forms:

Misalignment { :xy - 'ny Ay

about x axis xz ™ sz 2
Misalignment {eyx " ny Ax
about y axis eyz ] -Kyz Az

Misalignment ®2x ZX X
about 2 axis

Where the Ax’ Ay’ Az are in platform coordinates.

Platform Compliance Modal

Deformation of the platform caused by g-loading causes the accelerometars
to be misaligned with respect to their theoretical input axes. The errors
in acceleration caused by this deformation are modeled as:

F-6
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P AA1 is the acceleration error along the ith axis caused by the
AJ and Ak accelerations.

Platform Alignment

platform axas. The acceleration error due to the platform misalignment is

!
I
i
f_ The platform 1s misaligned at launch by the angles ¢x’ ¢y. ¢z about the
I given by by

i g g

R BA(t) =\ ®y | X R(t)
. ¢,
where X and A% are in platform coordinatas. }

Fe2.2 DINS Error Model

Coordinate Systems i
{

The orientation of the plate axes on the RV {s given by

x = roll
y = pitch
2 yaw

The orientation of the DINS accelerometers and gyros is described in

)
Volume I1. %
l Accelerometer Error Model f
The DINS accelerometer error model {s given ir accelerometer coordinates i
' and is applied to all three accelerometers. The acceleration in accelero- '
i meter coordinates is denoted by 3
M
l A= AP
Ag
l F-7

L1 P bl ootk e e e e s——— oy - C e mtvm——— e ,
I8 . ’ )
- St TIR ey b e e st b re s et ety s o s . » N
f . . .
ha



LOGICON

where the subscripts I, P, O refer to the input, pendulous, and output
axes which comprise the right-handed accelerometer coordinate system. The
angular rate about the accelerometer input, pendulous, and output axes 1%
denoted by

e

The acceleration error along the input axis 1s given by ‘ 4

2 ]

2 2
SAp = Kg + KpjAp + Kphp + Kohg + KppAr™ + KpoAp™ + KAy
3 3
* Kiphthp + KighiAg * Kophghe * Kiahy™ + Kpahp

+ KNNIWP

——— o .

The descriptions of the coefficients for the error model are: ‘ ]

KB - bias
KIl - scale factor 3
KP - pendulous g sensitivity 5 1
K0 - output g sensitivity {
K12 - input quadratic nonlinearity
\ sz - pendulous quadratic nonlinearity
K02 - output quadratic nonlinearity
KIP - input-pendulous noniinearity
KIO - {nput-output nonlinearity
KOP - output-pendulous nonlinearity
K13 - input cubic nonlinearity
KP3 - pendulous cubic nonlinearity

Koa = output cubic nonlinearity

Kw - anisoinertia
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Since DINS is a strapdown system, the accelerometers measure acceleration
in a coordinate frame which changes as the RV attitude changes. In order
to obtain the inertial velocity increments, the sensed body velocity
increments must be transformed into the inertial coordinate system. One
method of doing this would be to first transform the velocity increment
from the sensor (accelerometer) frame S to the body frame B by

AVB = [§ —=B) AVS
where the sensor-to-body matrix [S —=B] {5 constant in time. The incre-
mental velocity in body coordinates could then be transformed into the
inertial system 1 by

M) = (8 —=1] 8T,

where the body-to-inertial matrix [B.——=1] {s determined by the body
orientation, which in turn is obtained from the gyro measurements.

Gyro Error Model

The DINS gyro error model is given in gyro coordinates and {s applied to
all three gyros. The acceleration in gyro coordinates is denoted by

where the [, J, and K axes form a right-handed coordinate system. The
angular rate about the gyro I, J, and K axes is denoted by

tach gyro is designed to measure the rate about its [ axis (NI).

F-9
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The error in the measurement of rate {s given by

-1/2

SN = Kp + Kpy ¢ MLYL IR YSLILD IR Y PRLILY

) * KpakrAGT KoMy + Ky + Kgaghahy * KeakWiAx
i The descriptions of the coefficients for the error model are: !
KB - fixed drift
KRN - random walk drift

, KI - scale factor
3 K
; 1Al
K1a0
KAk

Kd - misalignment %o J
KK - misalignment to K

- acceleration sensitive misalignment to J

Ksag

KKAK - acceleration sensitive misalignment to X

acceleration sensitive scale factor

Plate Error Model

Deformation of the plate by g-loading causes the accelerometers to be j
misaligned. Due to a lack of physical test data, a simple bending model
relating the structural compliance of the accelerometer cluster to the
g-loading was chosen, This model {s the same as the SHIP platform compli-

ance model. l

.

Fe2.3 Candidate Operational Trajectory

e —— ki

f The operational trajectory assumed for this analysis is the standard MMII!
-27.5 degree reentry angle accuracy studies trajectory terminated by a '
mixture of yaw maneuvers and coasts. The reentry trajectory is depicted

in Figure F-2,
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F.3 IDENTIFICATION OF PRINCIPAL PERFORMANCE CONTRIBUTORS

The operational accuracy of a strategic missile system is calculated from
an error source budget since the system accuracy cannot be measured
directly in an operational environment with operational trajectories.
Thus, an error source budget is estimated in testing activities and the
system performance is calculated with error analysis techniques for the
operational case.

Therefore, the accuracy of the operational performance estimate depends on
the fidelity of the error source budget determined from testing activities
and the sensitivity of the calculated operational performance to varia-
tions in the error source magnitudes. This sensitivity depends both on
the magnitude of the particular error source value in comparison to the
remainder of the error sources and on the error sensitivity of the partice
ular source. For example, in a system where the budget accuracy is
dominated by a single error source, a small change in the magnitude of
that source will cause significant change in the calculated accuracy. At
the same time for one of the smalier contributions, even though it might
have a large individual error uncertainty, the same percent change will
have a much smaller effect on calculated accuracy.

The criterion for selecting the principal performance contributors in this
analysis 1s the sensitivity of system CEP to variations in the error
source magnitudes about a priori budget values.

The system sensitivities were evaluated using the Logicon System Ervor
Analysis Program (SEAP) which uses an extended Kalman fiiter to propagate
system errors and to simulate the system measurement updates of un aided
system. SEAP operates as shown in Figure F-3 to evaluate the performance
of an optimal system mechanization.
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F-3.1 SHIP Principal Performance Contributors

In the SHIP guidance system under consideration, the reentry systems
errors consist of the navigated position and velocity plus the 93 SHIP
error sources, while the navigation aid, the NS-20, is modeled by 78
error source states fn a filter state vector because of correlations from
measurement to measurement, The SEAP state vector is shown in Figure F-4,

The system sensitivities were calculated by perturbing the error source
magnitude by a factor of 10 (making the magnitude larger) and calculating
the resulting change in CEP.

The system sensitivities were first evaluated {n groups to eliminate pos-
sible error sources from contention. The groups were formed based upon
the results of linear error analyses of the SHIP over the boost and re-
entry phases of the mission. For those groups not eliminated, the contri-
buting error sources were determined using subdivisions of the groups and
finally individual system CEP sensitivities were determined. For the sys-
tem and a priori error budget under consideration, the system sensitivity
magnitudes are dominated by 13 error sources. The 13 error sources with
the largest sensitivities and their sensitivities are given in Table F-1.
These significant sensitivities arise during the reentry phase since the
effects during boost are estimated by the inflight measurements., Error
sources, such as azimuth alignment which might be expected to appear among
the largest contributors do not because they are estimated by the inflight
measurements.

F-3.2 DINS Principal Performance Contributors

In the DINS guidance system, the reentry system errors consist of naviga-
ted position and velocity, initial misalignment and 96 DINS error sources,
The NS-20 ervors are modeled as for SHIP. The SEAP state vector is as
shown in Figure F-4 except for an added random walk gyro drift, which is

modeled as described earlier.
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Source Number

Description

SHIP Principdal Performance Contributors

CEP Contribution
(% of Systenm CEPl‘“

~ O W B W N e

10
11
12
13

Gimbal Mass Imbalance about ¢ by Y
Y-Gyro DII

X-Accelerometer Bent to Y by Y
2-Gyro DSs

X-Accelerometer Bent to Y by X
X-Qyro DIo

Gimbal Mass Imbalance About X by Y
Y-Gyro Dm

X-Accelerometer Bent to 2 by 2
Y-Gyro D00

2-Gyro DII

Z-Qyro l)OS

*1000% {ncrease in uncertainty

-l il

Fo16

139
95
84
8
56
40
39
35
35
35
34
27
a
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As with SHIP, the significant system error contributions of the DINS plat-
form arise after the boost phase. The principal DINS error contributor

1s the gyro scale factor which causes a misalignment at reentry. This
misalignment is substantial because of the many revolutions of the reentry
vehicle during free t1ight. Thus a small gyro scale factor error will
produce a large misalignment at reentry.

This misalignment is oriented principally along the average direction of
the roll axis during free flight. Since this direction 1s approximately
along the roll axis at reentry, the effect on CEP at impact is less for
the trajectories considered here than if the misalignment were about the
pitch or yaw axes. Consequently, the initial pitch and yaw misalignments,
though much smaller than the roll misalignment, have a comparable miss
contribution. The initial platform misalignments at reentry contribute
96% of the total DINS reentry CEP for the operational yaw-maneuvering
trajectory. Thus, the principal performance contributors considered for
the DINS guidance system are only the three initial platform misalignments
at reentry,

L O T
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F-4. FLIGHT TEST REENTRY TRAJECTORY DESIGN

F-4,1 Fl1ight Test System

The system assumed for the flight test experiment is the flight test re-
entry vehicle deployed from a Minuteman I booster on a SAMTEC to Kwaja-
lein trajectory. For this analysis the reentry vehicle impact is assumed
to be in the lagoon where adequate ground sensor coverage s possible.
The flight test boost trajectory has a -26.7 degree reentry angle.

The boost guidance system is the NS-10 guidance set and each RIMU is a
less mature version of the operational RIMU. (Some of the error source
magnitudes are budgeted larger than those for the operational version.)
The flight test RIMU error model form is identical to the operational
model described earlier. Except, the SHIP platform axes are in a down-
range, crossrange, and down orientation at launch, and the DINS platform
axes are along roll, pitch, and yaw 4t reentry.

A set of three sensors has been chosen. Figure F-5 shows the locations
of the sensors and the assumed impact point. The three sensors are each
assumed to be a composite of a radar (for range measurement) and a camera
(for angle measurements) located at the sites shown. Ground sensor
measurement accuracy 1s assumed to be 20 ft (lo ) in range and 0.003°

(Lo ) in azimuth and elevation. (In addition, the radars have bias and
scale factor modeled errors and the cameras have bias errors for azimuth
and elevation each with the equivalent corresponding los at a range of
100,000 ft.) The initial estimate of the reentry vehicle state at re-
entry is assumed to be derived from this ground sensor data.

The assumed vehicle is a bank-to-turn vehicle so that the controls avail-
able are normal acceleration, 2 and the bank angle, ¢. The accelera-
tion due to aerodynamic drag on the vehicle is partially a function of
the normal acceleration. The vehicle is subject to cortraints on normal
acceleration magnitude, fntegral of acceleration, and impact Mach number.

F-18
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F-4.2 The Identification Problem

The RIMU and ground sensor state error varfables are taken to be of the
bias form, 1.e.

8RIMy

@
]
|-
u
o

®sENSOR

where the vector eRIMU contains the RIMU error parameters to be identi-
fied and the vector eSENSOR contains the ground sensor non-random error
parameters.
The measurement equation {s

Z{t) = H(t,u) 8 + v(t)
where

ECV(E)VT (")) = R(t) &(t - t')
F-4.2.1 Observability of SHIP Error Sources
[t is instructive to examine the form of the SHIP errors. The SHIP
error sources can be divided into gyro and non-gyro errors., In platform
coordinates, the SHIP acceleration errors can be shown to be of the fol-

lowing forms.

Non-Gyro Errors

Ny Eﬁi(t) = A (T)A (t)

F-20
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Gy A—Ai(t) - eita{ﬁ(t) 3

t
Go: BA (t) e "1/ Ay(r)dr BA(t)

0 |

&

— t - j

Gy BA(t) = eif A (DA (1)dr BR(t) s
/ |

i

where Ak and Az are the k and % components of the acceleration A and

[ 0 3 =4
-GJZ -GJI 0 ]

is a misalignment matrix corresponding to a rotation about a predefined jth
axis for the {th error source.

[f a velocity measurement is tn be made, the observable for the ith SHIP
error source is

t
AV, (t) = Jr Kxi(r) dt
0

and for a position measurement

BR (t) = f f ER,(s) dsdr [
0 ¢

The non-gravitational acceleration in platform coordinates is a function ot
the normal acceleration and bank angle control,

£-21 J
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At the time of maneuver initiation on the flight test trajectory, the
vehicle drag is nearly along the platform negative z-axis and yaw maneu-
vers will produce platform y-accelerations while pitch maneuvers produce
x-accelerations.

Figure F-6 depicts the non-gravitational acceleration in platform
coordinates for the flight test trajectory equivalent to the assumed
operational trajectory {(a yaw-maneuvering trajectory). For the yaw=
maneuvering trajectory, drag and the yaw-accelerations produce primarily
ay and 3, inputs to the SHIP error dynamics. It can be seen that for
nine of the error sources, including the five most important, little
separation in the output channel can be achieved by the yaw-maneuvering
trajectory. On this trajectory error sources 6 and 13 have virtually no
output. In contrast, for a combined a2, (pitching maneuver), a three-
way channel separation can be achieved for five of the error sources.
This observation, coupled with the realization that a pitch-up maneuver
tends to extend flight time and thus the number of measurements, suggests
that pitching maneuvers may be advantageous. It is also clear that more
output channel separation would be achieved by the use of maneuvers which
induce accelerations along all three platform axes. Thus high accelera-
tion and "zig-zag" type maneuvers are desirable for SHIP error source
observability.

F-4.2.2 Observability of DINS Error Sources

To enhance the observability of the principal DINS error sources, namely
the initial platform misalignments at reentry, by using radar/camera
measurements, a trajectory with a large dispersion from the ballistic
impact point {is desired. This can be accomplished by a large yaw maneu-
ver 1n one direction. Thus the DINS principal error sources, in con-
trast to those of SHIP, are easily observable,
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F-4.3 Input Design Techniques

The problem under investigation here is to improve the jdentification of
the RIMU error sources by varying the test flight trajectory, and as such,
is an input design problem. This problem area has been the subject of
much statistical and engineering literature. A common approach, which is
somewhat independent of the estimator invoked, is to use the Fisher infor-
mation matrix, M, as a measure of the information on @ provided by a feas~
ible input. The reason for its use is that it is computationally attrac-
tive and its inverse, termed the Cramer-Rao lower bound, provides a "good"
lower bound on the covariance of © for all regular unbiased estimators.
(Here, reqular refers to certain modest regularity assumptions on the dis-
tribution of the observations, Rao (1965).) The solution sought opti-
mizes some objective functional of M or M'l. for example a weighted trace
or determinant, Mehra-Gupta (1974),

The general problem considered in the literature is of the form

X« F(£,8) X+ G(t,8) u ; Y = H(t,8) X +v (F-1)
where

X {s the state vector

u 1s the input control vector

g 1s the vector of unknown parameters
v is a white noise vector with zero mean and covariance R.

Making use of the additive type control, various objective functionals
can be expressed as \

J(u) = !< Tu, u >

F-24
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where u belongs to some Hilbert space M, [lull < 1 and T is some
normal, compact bounded linear operator on H. An optimal input u then

is max J(u), which is satisfied by the u corresponding to the largest
ueH
eigenvalue (in absolute value) of T (see p.313 of Rudin (1973), Gupta and

Hall (1975)),

The problem considered here does not fall into the form of (F-1) since it
is not 1inear in the control u. Consequently, 1t cannot be solved by
applying the above technique. In fact, here H is a function of u and is
sufficiently nonconvex in u so as not to guarantee convergence to an opti-
mal input of any general optimization algorithm. As a result, optimiza-
tion techniques, based on certain necessary conditions for solution, are
used in the present problem.

Commonly, a linear functional of the information matrix M is chosen for
the objective functional, since for the general problem (F-1), M is a
quadratic function of u, The drawback with maximization of diagonal ele-
ments of M {s that the off-diagonal elements can become large, in which
case the diagonal elements of M"1 can increase. This fact, in conjunc-
tion with the nonconvexity of H in u for the problem here caused the
choice of a linear functional of the covariance matrix as the objective
functional to be minimized. This function is defined next.

F-4.4 Trajectory Pertormance Criterion

The performance function chosen for the trajectory design problem here is
Jwtr (WP = wp T = E(Wee™W!)

where Pf {s the final covariance of the RIMU error parameters after
estimation,
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W is a row vector of sensitivities of the candidate operational system
error contributions with respect to error source uncertainty. Table F-2
gives these weights for SHIP when multiplied by the initial error source
uncertainities and normalized to 1.0, The normalized weights used for the
initial roll, pitch, and yaw misalignments of the DINS platform when mul-
tiplied by their initial uncertainities are 0.5, 0.25, 0.25 respectively.

F-4,5 The Trajectory Design Problem

The flight test trajectory design problem formulated above is

Min  WPFWT
uey

Table F-2. SHIP Performance Criterion Weights*

Error Source Weights
1 0.192
2 0.132
3 0.116
4 0.108
5 0.077
6 -0.055
7 0.053
8 0.048
9 -0,.048
10 0.048
11 0.047
12 0.038
13 0.038

*Normalized to 1.0

F=26
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where
U 1s the set of autopilot of control commands satisfying

vehicle and instrumentation constraints, and yielding
reentry trajectories with a sufficiently high velocity at
impact
W is a vector of weights based on the contribution of 8 to
the operational trajectory CEP
is the covariance of the RIMU error sources after estima-
tion using the measurements

The form of the measurement is:
Z(t) = H(t,u) § + v(t)

where
2(t) {s the difference between the telemetered RIMU output

and radar/camera ground measurements
H(t,u) {s the matrix of sensitivities to the RIMU and
radar/camera error sources,
v(t) 1s the measurement white noise with covariance R(t)

v This problem is a "highly" nonlinear optimization problem over the Banach
‘ space of continuous control functions uel and is too unwieldy to solve.

b Consequently, an approximate solution 1§ sought. First, a finite dimen-

: sional approximation to the space of control functions is defined by

’ considering only step function control commands which are defined over

the following six time intervals. q

19.0 + 22.0
22.0 + 24.0
24,0 + 26.0
26.0 + 28.0
28.0 -+ 30.5 e
30.5 34.5

+
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The control commands are specified as a normal acceleration and a bank
angle during each time interval, So, the allowable control command space
has been reducad to a twelve dimensional euclidean space. Second, in
order to decrease the cost of the reevaluation of Pgs the number of error
sources considered {s decreased from the full model to the principal
operational error sources plus the three initial misalignments. Third,
an efficient reentry trajectory generator was developed to approximate
the more costly complete 3 DOF flight test trajectory simulator,

This reduced trajectory design problem is still a highly nonlinear con-
strained optimization problem, but the number of variables have been dra-
matically ¢ut to make the problem manageable,

The procedure herein i: to apply the simplicial pivoting algorithm to
the reduced trajectery rlesign problem for SHIP and for DINS and then
determine the improvement of this designed trajectory over two current
candidate flight test trajectories using the full model estimator and
trajectory generator,
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F-5. THE SIMPLICIAL PIVOTING ALGORITHM

In this section the rational behind the selection of the simplicial pivot-
ing algorithm to solve the reduced trajectory design problem is given and
the development of the algorithm to the problem is described. The
rational used here is the same as would be used in attacking a variety of
optimization problems,

Fe5.1 Selection of an Optimization Algorithm

The methods available to solve constrainted optimization algorithms can
be classified into gradient-type and direct-search methods. The charac-
teristics of the problem at hand are used to determine the appropriate
type of algorithm to apply.

Fab.1.1 The Two Classas of Algorithms

Gradient-type algorithms are those which require the use of a derivative,
or an increasingly accurate “approximate* derivative, of the objective or
constraint functionals, These algorithms require more computations per
{teration than the direct-search algorithms, but for "well-behaved" prode
lems they have a faster convergence rate as well as conditions for
"optimality" of the solution. Gradient-type algorithms are divided into
two classes - those which solve a sequence of uncontrained problems
formed by adding a sequence of penalty functions and those which generate
4 sequence of feasible-descent steps.

Penalty functions are added to the objective functional or to the Lagrangian
of the problem in an effort to increasingly penalize candidate solutions
which are ncar the constraints or infeasible. Feasible-descent directions
are commonly generated by using a minimum norm projection onto the feasible
set of a descent direction such as -VJ or -H"'¥3. In the case of non-
1inear constraints the projection {s frequently performed onto the inter-
section of the tangent hyperplanes of the "e-active" constraints at the
point.
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In many optimization problems analytical derivatives are not available

and finjte difference approximations involve excessive computational

cost. Consequently, direct-search algorithms based only on the values of
the objective functional and the constraints have been widely used.

These algorithms are easy to implement and are applicable to a broad

class of problems. They are aimed at finding “good" solutions since opti-
mality conditions are usually sacrificed for improved efficiency. Though
the rate of convergence {s generally slower than for a gradient-type
method, the lower computational cost per iteration, which {s indicative
of direct-search methods, provides for better overall efficiency in many

problems.

F-5.1.2 Trajectory Oesign Problem Characteristics

The choice of the type of algorithm to use depends on the properties of
the problem at hand,

The characteristics of the reduced trajectory design problem which are
{mportant in algorithm selection are the following:

1}  The objective functional Jr(u) and the trajectory con-
straints are "highly” nonlinear in the trajectory control

variable u.

2) The gradients of Jr(u) are costly to compute.

3) Due to inflight perturbations in the commanded trajectory
a "precise" solution is not necessary,

4)  The dominant cost of solution is the functional evaluation
of J.(u),

§) The trajectory control solution space {s twelve dimen-
sional euclidean space,

Properties 1, 2, and 3 of this problem indicate that a direct-search
algorithm will perform better here than a gradient-type algorithm,
Properties 4 and 5 will help in determining which type of direct-search

algorithm to choose.
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F-5.1.3  Direct-Search Algorithms

The first type of direct-search algorithm to be considered is the method
of local variations, see Banitchouk (1966). This method is based on a

progressively finer partitioning of the feasible set. From xK the algo-
rithm samples adjacent vertices of the partition, xK + aiKPiK, until for

=3, d(xK + GJKPJK) < J(xM).  Then PULEIPIN SN aakaK. When such an
{improvement is no longer possible, the aiK's are reduced (i.e., the mesh
of the partition is reduced) and the algorithm pivots on a finer partition
(sea Figure F-7 for an example), For the unconstrained problem, the accu-
mulation points x* of these ;xK| are shown, under reasonable assumptions,
to satisfy WJ(x*) = 0.

The standard partition is an orthogonal one, but, if possible, 1t is
better to choose a partition where there are P1‘s along the constraint
boundaries. When the constraints are nonlinear a penalty function tech-
nique should be added. The purpose of this is to help avoid a “jamming"
of the algorithm at a boundary point which is not near a solution.

The DSC method (see Swann (1972)) is 1ike the above method except that
mutually orthogonal search directions are rotated according to the prog-
ress made after trying all the search directions. For example, in the
case of a linear constraint violation, the boundary point is estimated
and the normal to the constraint is taken as one of the search directions
with the others chosen orthogonal to 1t. (This 1s usually called self-
bounding.) Such methods which change the search directions sacrifice the
partitioning and the corresponding convergence proof of local variations
for a more efficient boundary following search scheme. Since there is no
longer a partition to ensure no cycling, the DSC method uses a single-
step parameter for {ts search and it {s reduced when it is greater than
the total progress made after a full cycle of search directions.

A simpler approach {s a Monte Carlo method (see Luus and Jaakola (1973))
where m search directions are selected at random. The algorithm pivots
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Figure F-7. Method of Local Variations
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to the best feasible of these and then a new set of reduced size is
again selected at random. This method, however, seems to require an
excessive number of function evaluations.

Powell's (1964) conjugate direction method searches on a set of directions
which are updated each iteration using the total progress vector P, only
1f exchanging it with a current search direction increases the value of

4 which is characteristic of a conjugate direction with respect to a quad-
ratic approximation of J. Namely, if J = 1/2 xTHx + aTx and {f the search
directions {P1: i =1,...,n) satisty 1/2PTiHP1 = 1, then the determinant,
4, of the matrix P composed of Pi‘s takes 1ts maximum when the P1 are
mutually conjugate (1.e., PiTHPj s 0), Simple tests can be derived to
determine which Pi to replace by P for maximum increase in A. The genera-
tion of the search directions P1 {s based on n-dimensional minimizations
and the following easily-derived fact.

If the minimum of & quadratic J in a direction P from ¥y {s at Xy for
{ s1,2 then Xg = Xy is a conjugate direction to P. A basic iteration
for an initial guess x, and (Pl""Pn) is

1) Define x; = x;_y + P, where a, minimizes f(x; ; + aP,)

for { s 1,..4,n.
2) Define P, = P, ,, P = x, = X5, and replace xy by x, + @P .

The purpose of evaluating A i{s to help avoid the directions Pi from becom-
ing 1inearly dependent. A simpler way to avoid this is to reinitialize
every n+l iterations.

A method which does not require the l-dimensional minimizations as des-
cribed above {s the pattern search method (see Hooke and Jeeves (1961)),
This method searches from x* along x* - %1 g distance | x55 11 o
obtain a point yK, from which n-iterations of a local variation-type pivot-
ing 1s performed to obtain xK+1. An example is shown in Figure F-8 for

n=2,
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There are many constraint-following schemes {see Glass and Cooper {1965))
the purposes of which are tc avoid "jamning." Some of these include:
searching along 4 pattern direction as long as there is improvement,
local variations along tangent hyperplanes to active constraints, and
gradient projection techniques. 3
The probes yK are allowed to be nonfeasible in the hope that local varia-
tions pivoting will produce a feasible point, if not, local variations
are performed around xK. If these variations fall the step size is
reduced. As an additional afd, penalty functions have been used as des-
c¢ribed earlier., Nevertheless, in higher dimensional problems, pattern -
search is not as effective in determing appropriate pattern directions
and seems to be more prone to "jamming."

Some of the methods which are more flexible in selecting search direc-
tions are the simplicial pivoting methods (see Spendiey, Hext, and
Himsworth (1962), Box (1965), and Keefer (1973)).

To approximate solutions to minimization problems on an n-dimension
euclidean space, R“. simplicial pivoting algorithms store the value of
the objective functional, J, at n+l points {Vi L I TR )
Pivoting from these points 1s accompiished by dropping the point VJ with
the largest value of J and adding the point V3 obtained by refiecting

VJ through the centroid, ¢, of the remaining points, Namely, ?

* a M -

y ey
E A
B where i
3 ‘
, i
_ n+l
' C=9 Vy/n

1a}

inj
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The convex hull of [V1 1 =1, ..., n+ 1} forms a closed n-simplex.
The simplicial pivoting just defined {s depicted for n=2 in Figure F-9,

In the algorithm this pivoting continues until V3 {s infeasible or d(Vj)
is also the largest value of J when compared with the other vertices of
the n-simplex. When this occurs a new vertex is generated by reflecting
VJ through the vertex Vk with the best value of J, namely VJ' s 2vk - VJ.
If J(VJ') is again the largest, then Vj is dropped and simplicial pivot-
ing 1s performed on the remaining n-l-simplex. The purpose of this is to
cause the algorithm to follow the valley or constraint which is assumed to
be approximately orthogonal to V3 - VJ.

To help avoid "jamming"on the constraint boundaries a penalty function is
added to the objective functional which increasingly penalizes points
near the constraints. The penalty function is chosen so as to form a
valley between the constraints on fhe interior which the algorithm can
follow. To aid in this and thereby in¢rease the rate of convergence,
mesh expansion logic can be included to increase the size of the pivoting
steps along directions "locally" parallel to the contraints.

F-5.1.4 A Comparison of Direct-Search Algorithms

The direct-search algorithm to be applied to the reduced trajectory
design problem 1s chosen based on the characteristics of the problem.

The Monte Carlo method is ruled out since information on previocusly eval-
uated trajectories should be used to aid in selecting a new trajectory in
order to cut down on the prohibitive cost of trying to cover the space of
feasible tra,ectories. Also, the conjugate directions method does not
seem appropriate due to the nonquadratic nature of J and the cost of
l-dimensioned minimizations,

The methods of local varfations, pattern search and simplicial pivoting
can be compared on the basis of the amount of memory of previously evalu-

ated trajectories that each possesses. The method of local variations
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Figure F-9. Simplicial Pivoting Method
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and pattern search have 1 and 2 point memories respectively. whereas{
simplicial pivoting has a n+l point memory where n here is twelve. Due
to the dominant cost of functional evaluation, the relative cost of this
memory is negligible. Thus, since the simplicial pivoting method pro-
vides a better current local approximation of J(u) without noticable addi-
tional cost, it should better select a new pivoting direction in which to
proceed, Also, the improvement techniques (i.e. penalty functions, con-
straint following, and mesh variation) of local variations and pattern
search have their counterparts in the simplicial pivoting algorithm.
Consequently, a simplicial pivoting algorithm was selected to be applied
to the reduced trajectory design problem.

F-5.2 The Simplicial Pivoting Algorithm

In this section the application of the simplicial pivoting algorithm to
the reduced trajectory design problem is described. The pivoting is per-
formed with twelve dimensional simpiicies where each dimension represents
a commanded normal acceleration or bank angle over one of the six trajec-
tory time intervals specified above., The initial simplex 1s generated
using a method of local variations from the starting trajectory comprised
of 10% max 9's changes in the yaw commands and 5% max g's changes in the
pitch commands. The objective functional Jr was evaluated for each of
the thirteen verticies and a penalty function based on the velocity at
impact was added to each Jr. More precisely the total cost Cr for the
trajectory specified at each vertex was evaluated as follows:

Cr(i) = [1 + 10/{V(i) = VB)] Jr(i)
where
V(1) {s the velocity at impact of the {th vertex

and V(1) > Vg + 10.
VB is the smallest allowable velocity at impact in ft/sec

If V(1) < Vg + 10 then Cr(i) is assigned a large number,
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The vertex VJ of the simplex with the largest C. is dropped. If this
vertex s an allowable trajectory a new vertex is added by reflecting it
through the centroid, C, (i.e,, center of mass) of the remaining vertices.
Namely, the new vertex, V;. is C+(C-VJ). On the other hand, when VJ is

not an allowable trajectory or it was the last to be added, it is replaced
first by the reflection of it through the vertex with the smallest Cr with
the step cut in half., Namely, V3 " Vk + 1/2(Vk-vj). [f this last replace-
ment V* 1s not an allowable trajectory then it is dropped and pivoting is
resumed on the remaining simplex of one lower dimension.

Mesh expansion is incorporated whenever the newly added vertex, V3. has
the smallest cr and the decrease in the velocity at impact i{s not too
large. Namely, Vy=C+ 2(C-V;) whenever V(VJ).- V(vg) < vtv;) -
(VB#IOO) where V(Vz) is the velocity at impact of the trajectory Vg.
These mesh reduction and expansion schemes help, respectively, to flat-
ton the simplex along directions which cause V(i) to decrease too rapidly
and lengthen the simplex along directions which improve Cr(1) while not
decreasing V(1) too rapidly.

T

In addition to computing the perfonmanig criteria Jr = WPW', the algorithm

also computes the weighted trace Tr {:E: N12P11 as a measure of per-

il
formance independent of any correlations set up between the error sources.
When desired, the algorithm will optimize with respect to Tr instead of dr.
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Fe6. RIMU PARAMETER ESTIMATION PERFORMANCE

In this section the performance of the estimation of the principal RIMU
error sources, after comparing RIMU data and radar/camera ground sensor
data, is described for various simulated flight test trajectories. Re-
sults are presented for SHIP and for DINS. The estimator used in this
analysis is a version of the USAF/ABRES post-flight data reduction Ex-
tended Kalman Filter estimator operating in a covariance-only mode so that
synthetic data is not required. Estimation performance is first evaluated
for the principal error model state used in the reduced trajectory design
problem and then for the full error model state. The measure of performe

ance used is the trajectory performance criterion J = WPFNT defined earlier.

13
[n addition the value of the weighted trace T -:E: “12P1i is given for
{n]

each trajectory as an altarnate measure of performance which disregards
correlations.

F=6.1 SHIP Parameter Estimation Performance

The results of the SHIP flight test trajectory design for the purpose of
improving the estimation ot the principal performance contributors are
presented in two parts. First, the trajectories designed by the simpli-
cial pivoting algorithm using the 16 state reduced order model are com-
pared with the two candidate flight test trajectories, Second, the full
SHIP and radar/camera error models are applied to determine the error
source parameter estimation performance of each trajectory. The results
show a designed trajectory with 56% and 78% improvement in the full model
weighted performance criterion over the two candidate flight test trajec-
tories, respectively.

e e




F-6.1.1 SHIP Trajectory Design Results

This section gives the results of applying the simplicial pivoting
algorithm to the reduced trajectory design problem. The algorithm was
fnitiated from the operational yaw maneuvering trajectory, on which the
performance weightings are based, the two candidate AMaRY flight test tra-
Jectories, and a ballistic trajectory. The commanded normal acceleration
and bank angles as a function time for these trajectories are given in
Tables F-3, F-4, and F-5. Forty simplicial pivots were made from each of
these trajectories. The performance results using the 16 state vector are
summarized in Table F-6. Tables F-7, F-8, F-9, and F-10 give the result-
ing designed trajectories from the simplicial pivoting algorithm.

Of the four initial simplicial pivoting results, the trajectory designed
from the candidate operational yaw maneuvering trajectory performed the
best. Consequently, the algorithm was applied from this trajectory two
more times at 40 pivots each. The first application ylelded a trajectory
with a J ® 0.035 and the next application yielded the trajectory called
Design A, described in Table F-11, with a Jr = 0,018 and a Tr = 0,80, To
check for an approximate local solution the algorithm was applied again
for 40 steps from this Design A trajectory. The resulting Design B tra-
Jectory defined in Table F-12 had dr = Q0,016 and Tr = 0,80, Since the
additional improvement in Jr was minimal, the minimization was stopped
here with a 97% {mprovement of Jr over the yaw maneuvering trajectory.

Next, the simplicial pivoting algorithm was applied to the minimization

of the weighted trace Tr for the reduced trajectory design problem which
was defined above. As expected, the improvement in Tr is not as dramatic
as that for Jr since correlations set up in the measurements do not affect
the value of Tr' The minimization of Tr was inftiated at the Design A
trajectory. The resulting trajectory after forty pivots is described in
Table F-13 and has Tr = 0.76, This trajectory is similar to the Design A
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Table F-3, Yaw Maneuvering Trajectory
T_(seconds) A (% maximum) $(deq)
17.7 67 90
20.4 0 90
24.5 100 90
26.0 100 -90
28.5 0 =90

Table F-4. Flight Test Trajectory #l

T _(seconds) A (% maximum)

19.8 67
24.8 0
26,8 67
29.8 0
1.8 67
33.9 0

$(deg)

90
-75
=75
180
180
180

Table F-5. Flight Test Trajectory #2

T_(seconds) A (% maximum) ¢(deq)
17.8 47 180
21,3 0 0
26.3 100 0
27.6 Q0 90
28.5 100 90
30. 67 180
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Table F-6, dr SHIP Optimization Results After 40 Steps

Initial After 40 Pivots

| ‘ Jp Te Jp Tw

Yaw Maneuvering 0.526 1.07 0.103 0.875

i Flight Test #1 0.85 1.15 0.44 0.86 k
Flight Test #2 0.60 1.52  0.286  1.24 ’
Ballistic 2,22 2.24 0.17 1.07 &

Table F=7, Trajectory Designed With Initialization at Yaw=Maneuvering 1

! T_(seconds) A (% maximum) ¢ (deg) )
| 18.0 13 61
20.5 11 <456 !
22.0 20 -39 ‘
24.0 100 91
26.0 97 -98 :
28,0 3 -153 !
29,0 a3 128 i
30.5 27 76,5 j
34,5 0 76.5 !

F-43




Table F-8. Trajectory Designed from Flight Test #1

T_(seconds) A (% maximum) $(deg)
19.0 23 83.6
22.0 31 87.5 3
23.0 61 90.3 f
25.5 . 7 -81 b
; 27.0 97 -86.8 ;
f 30.0 25 97 C
§ 32.0 74 189 .
i 34,0 0 140 R
'{ Table F=9, Trajectory Designed from Fiight Test #2 :
VH T_{seconds) A (% maximum) ¢ (deq)
3
y 18.0 15 176 |
! 20.0 37 178 3
. 21.5 10 -33.8
. 24.0 11 5.6
| 26.0 100 93.6
| 30.0 67 176.5
n
i Table F-10. Trajectory Designed from Ballistic Trajectory
| :
B T_{seconds) A_(% maximum) Jbideg) !
. 19. 0.9 3 |
I 22 5. - 60 i
o 24 67. 90 | 3
| 26 50. 100 1
' 28 33, -112 |
; 30.5 11, 96.6 ;
‘f 34.5 0. 96.6 i
i
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Table F-11, SHIP Design A Trajectory ,
' 1
_ T (seconds) A (‘5 maximum) $(deq) ¥
f 19 4 -53 ;
L. 22 3l -34 i
¥ 26 100 98.3 :
- 26 100 -96 i
: 28 94 133 \
30.5 6 91 ‘
4.5 0 180 1
]
Table F-12. SHIP Design B Trajectory &
T _(seconds) A (% maximum) ¢ (deg)
N 19 5 42,6
- 22 36 -35.2 ‘
’ | 24 100 96.4
o 26 100 «93.8 .
: 28 100 138.2 '
30.5 26 92.9
E 34.% 0 76. i
F Table F-13. Trajectory Design Using T .
T (seconds) A (% maximum) b(deg)
19 10 -63
22 30 -26
24 97 101.5
26 99 -96
28 100 129
30.5 23 90.2
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trajectory and, as will be seen, its performance with the full error mode)
is expected to be nearly the same as that for the Design A trajectory.
The reason for this is the significant degradation in the final covari-
angce Pf of the significant error sources caused when the error sources
neglected in the reduced design problem are added. The extent of this
degradation from the 97% and 29% improvements in Jr and Tr respectively
for the reduced design problem will be des¢ribed next.

F-6.1.2 SHIP Parameter Estimation Results

{n this section the SHIP parameter estimation performance using the ful)
filter model is determined for the yaw maneuvering trajectory, the two
candidate flight test trajectories, and for the Design A and Design B
trajectories described above. Each reentry trajectory is simulated with

A detailed 3 DOF AMaRY vehicle simulator initialized with the nominal
fiight test reentry state. The full filter state vector includes Y0 RIMY
error sources, 12 ground sensor error sources, and 9 states for initial
position, velocity, and misalignment, The full state estimator results
measured in terms of J and T are given in Table F-14, A comparison of the
improvement in the SHIP principal perfornance parameter lo's for the tra-
Jectories is summarized in Table F-15. In terms of the trajectory perform-
ance criterion J, the Design A trajectory represents a 49'L improvement in
the yaw-maneuvering trajectory and 3 66% and 78% improvement in the flight
test #1 and #2 trajectories respectively.

Table F-14, Full State Estimator Results

Velogity at Impact

J T (% of Mintmum)
Yaw Maneuvering 0.731 1,40 132
Flight Test »l 1,11 1.62 137
Flight Test #2 1.70 2.04 152
Design A 0.376 1.27 115
Design B8 0,394 1.26 112
F-46
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Table F-15. SHIP Principal Parameter Estimation
' »
ii Percent change in lo Values from initial values 1
3“ Error Source  Yaw Maneuvering AMaRY #1  AMaRV #2 Design A Design 8 i
L y
¥ 1 19.0 13.7 6.3 34.2 34.3 :5
¥ 2 47.0 26.2 3.8 34.4 32.5 .ﬁ
b 3 6.3 5.1 1.7 9.0 8.6 E
3 4 30.5 22.0 2.2 28,7 29.8
= 5 16.5 21.5 13.2 16,5 17.7
5 :
| 6 4.6 6.2 4.1 8.9 10.1 {
f 7 51.6 23.8 1.9 32.4 27.2 ¥
X 8 3.3 27.1 7.2 46.8 48.3 4
; 9 2.4 4.2 3.3 2,9 2.7
: 10 3.5 5.5 6.3 5.9 7.3
11 6.0 6.2 12.4 1.3 10.1
¥ 12 3.4 5.3 7.9 5,0 4.3 i
;- 13 2.7 1.1 0.6 6.8 4.7 /
: ‘3
| " 57.0 57.5 66.0 46.5 48.5 §
o, 33.6 3%.3 69.1 524 54.5 é
s 34,0 47.0 58.8 51.4 54,1 ,
4!
1
|
%
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F=6.2 DINS Parameter Estimation Performance

The results of the DINS flight test design for improving principal para-
meter estimation performance are presented in two parts. First, the
trajectory design by the simpiicial pivoting algorithm using the three
state reduced order model is compared with the two candidate flight test
trajectories. Second, the full DINS and radar/camera error models are
applied to determine the error source parameter estimation performance
of each trajectory. The results show a 49% and an 80% improvement in

i the perfcrmance criterion over the flight test #1 and #2 trajectories,
respectively,

szje 10T amem DU

i i

F-6.2.1 DINS Trajectory Design Results

The simpiicial pivoting algorithm was applied to the DINS trajactory de-
sign problem with the reduced model consisting of the initial misalign-
ments. The algorithm was started with the ballistic trajectory. After
forty pivots the trajectory performance criterion, J, was reduced to
0.096 with a 1 directional yaw-type trajectory. From here forty more

%- pivots were made to decrease J to 0.066. The resulting DINS design tra-
4 jectory is described in Table F-16. A value of J and the weighted trace
T for this designed trajectory and the other selected trajectories are
compared in Table F-17. No further minimization of J was performed be-
cause the misalignments are very observable with almost all non-ballistic
Et trajectories. The degree with which the observability varies is depicted
g in the following section for the above trajectories.

P

F-6.2.2 DINS Parameter Estimation Results

The full 110 state DINS error model, the twelve radar/camera error states,
and a detailed 3 DOF trajectory simulation were used to drive the Kalman
filter which determined the parameter estimation performance. The values
of the velocity at impact, the performance criterion J, and the weighted

T e MR S e o St i A _ndial
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Table F-16. DINS Design Trajectory
T {seconds) A (% maximum) ¢ (deg)
19, 25, 65.
22, 59, 57.
24, 32. 76. :
26, 37. 134, s
28, 35, 91, ﬁ
30.5 64, 93. b
34.5 Q. 96. 4
1

! Table F-17. DINS Reduced State Trajectory Design Performance

S el

Yaw DINS
& Maneuvering Ballistic Flight Test #1 Flight Test #2 Design
! J 0.096 795, 0.24 0.76 0.066
i 4
i T 0.099 906. 0.16 0.33 0.037 ;

i
{
¢ {
i
i
4
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trace of the covariance matrix of the error at impact for the selected
trajectories are given in Table F-18. A compar1son of the accuracy of the
DINS piatform misalignment estimates derived for each trajectory using the
full model is given in Table F-19. As a result, DINS design trajectory
exhibits a 49% and 80% improvement in J over the flight test #1 and #2

trajectories, respectively.
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- Table F~18. DINS Full State Estimator Results
oo
E; Yaw DINS
;} Maneuvering Flight Test #1 Flight Test #2  Design
o Velocity at 132 137 152 101
v Impact
3}7 (% of minimum)
‘ F J 35.5 14.9 39.0 7.6 -
;i T 29.1 14.5 38.6 19.4 1
i
| Table F=19. DINS Principal Parameter Estimation |
!
. (% change in lo values from initial) "
b .
Lﬁ { Yaw :
: % Maneuvering Flight Test #1 Flight Test #2 Design -
by .
2 Roll 91.3 93.4 92.6 97.4 N

1 PYtch 76.4 85.2 73.9 84.5 _
;- ' - YMI 80.6 BSIO 72.8 76.4 .
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F-7. SUMMARY

An approach ‘o the design of flight test trajectories for the observation
of RIMU guidance system errors has been formulated. The approach entailed
a determination of the principal operational performance contributors and
the design of a flight tast trajectory to increase the observability of
these principal error sources. A simplicial pivoting algorithm has been
developed to perform this and trajectories have been designed with SHIP
and with DINS as the RIMU., The results show a 66% and 78% improvement of
the SHIP performance criterion and a 49% and 80% {mprovement of the DINS
performance critarion over the flight test #1 and #2 trajectories, respec-
tively. Also, the full covariance of the error in estimating the RIMU
and ground sensor errors has been generated for each RIMU and for each of
the selected trajectories.
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APPENDIX G
FREE-FLIGHT FILTERING

G-1. Measurement Equations

In order to improve alignment using free-flight filtering, the attitude
and sensed velocity obtained from the DINS gyros and accelerometers must
be compared with the attitude and sensed velocity calculated from body
dynamics. Using state space notation, the measurement at time { {s
expressed as

82y = My 8%y *yy (G-1)

where the measurement 8z and the state vector &x are given in differential
notation to indicate that these quantities are errors about the nominal
values.

In Figure G-1, the free-fiight filtering state vector {s given. By treat-
ing the position, velocity, and alignment errors as initial errors, the
entire free-flight state vector consists entirely of bias states, thus
eliminating the nead for performing a time propagation between measurement
updates. At the end of free-flight filtering, the contribution of DINS
errors to the present position, velocity, and alignment errors is easily
calculated and added to the state vector. In practice, the G&G errors of
Figure G-1 are not inciuded in the free-flight state vector since they do
not contribute to alignment or sensed velocity errors. Their contribution
to the total position and velocity errors is calculated independently and
is then added directly to the position and velocity errors at the appropri-
ate time.

For the case of a combined angle and sensed velocity update, the free-
flight filtering measurement vector is the difference between the DINS
calculated values and the body dynamics calculated values and is given

by

PO oY

= s
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Figure G-1. Freeflight Filtaring State Vector
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Yons - Yap .
8z = {G=2)
Soins - f80

Each individual term can be expressed as the sum of the actual value plus
an error term:

Yorns * Yactual * SYorns * SYquant
Yap * Yactua * Yo

801ns " factual * S2p1ns * $8quant
880 * factual * 580

The quantization errors, which are due to the finite instrument scale
factors, are separated from the other errors in these equations. Substi-

tuting equation (G-3) into equation (G-2), the measurement equation
becomes

(6=3)

$¥oins - ¥ap * 6!Quant'.
4z » (G~4)

SBpins - $980 * Squant

Since all error states are treated as bias errors here, the velocity and
alignment errors as a function of time are given by

pins , _ % pins

§Vnrue ® —pyme E E
W
I (G-5)
%a0 * 55, Eso
.58  DINS , _ 38  DINS
$So1ns ;-Engfws Bt a—ﬁm &
E L3
28
3%80 " 3L~ Eap
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Substituting these expressions for the velacity and alignment errors into
equation (G-4), we obtain

3V 3V 3V
3 oINS Y ps - 2V
W En  * & S B0 * *Yquant
I 260 3Egp
6z = ' (G-6)

38 DIns, _ 3%  pINs - 38
Tix E + —sTie 5= Egp * 88
b‘ -
Comparing equations (G-1) and (G-6), the measurement matrix H is seen to be

P—- ! -
I VRO
—D-m -—m { =
]
H = \ : (G=7)
9 b9 ' CL
010 _b%N'S'_b'?'M -
Ey > | A ) %y
- ] i \ —
and the measurement noise v is seen to be
$¥quant .
v = (6-8)
%quant

This measuremant matrix and the covariance of this measurement noise are
incorporated into a Kalman filter (Appendix C) to update the state vector.




G-2. Body Oynamics

In order to calculate the free-flight filter H matrix, the sensitivity of
velocity and angle errors to the error state vector must first be calcula-
ted. The sensitivity to the DINS error state is obtained from the DINS
error equations (Section 3.2.3). To obtain the sensitivity to the body
dynamics errors, body dynamics error equations are needed. Before deriv-
ing the body dynamics error equations, the nominal equations for calcula-
ting attitude and sensed velocity will be presented.

Euler's equation, modified to the case of zero external torgue, can be
used to compute the RV attitude during free-flight. The equation is
written as

[lp] wy *+ [wpx] [lél W - 0 (G-9)
The subscript p fndicates that these quantities are to be calculated in
the coordinate frame of the principal axes of the RV. Brackets are used

to denote matrix (or tensor) operations, and the symbol ['u'-px] corresponds
i to the matrix which results in the indicated cross product operation.

The equation for sensed velocity is given by

'V'b . be('ﬁb X ?b) + E'S'b X 'FB (G-10)
where the subscript b indicates that these quantities are to be calculated
in a coordinate frame fixed with respect to the body. The first term on

3 the right hand side of the equation is the centripetal acceleration. As

a result of tha coning mot1on.ihb is nonzero, and both terms on the right
hand side of the equation therefore contribute to the sensed velocity.

In the computer simulation, error equations for body dynamics are used to
compute angle and sensed velocity errors directly. The error equations

G-5
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are obtained by taking small perturbations. about the nominal body dynamics
equations (G-9) and (G-10). The resulting equations are:

& il sl (T
. Al ) [ 2] - "]} [1-¢]" &3, .

Gel - GNI

v [ 5 Bpe o, - s o
S R

where 60 = rate error in inertial coordinates

t
'69I = alignment error in inertial coordinates

GVB = sensed velocity error in body coordinates

[1+P] = coordinate transformation from inertial to principal
axis coordinates

[I+8] = coordinate transformation from inertial to body
coordinates

81 = error in magnitude of moment inertia about principal
axes

89 = alignment error of principal axes

w
[A] = —B = sensitivity of rate error derivative about orinci-

3L, pal axes to djo

% :
[‘p] « =P sensitivity of rate error derivative about princi-

P pal axes to 6Eb
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The quantities [A] and [§_ 7] can be calculated in a straightforward manner
3 from equation (G-9). First, we write the equation for each componeni of
the vector equation separately:

: I

-1
: « . p2 3
] “p1 [pl “p3 “p2
l . 1 3" ! 1 .
H Wp2 * 'LI‘—LPZ Wpl Wp3
' . Io - o
¥ %3 TT Y2 Unl
f- { .
b Then, is seen to be
i m
‘. B 1, -1 I, =1 )
2 3 2 3 !
_} .- 0 B R 'Ll"‘i,‘p1 9p2
1 I, -1 1, =1
! . 3 1 3 14 G-12
[;pJ ..E_I;_wa 0 ‘Lx;',‘.“e‘.“m (6-12)
I, -1 Iy =1
pl " p2 ‘pl ~ ‘p2
3 P bz P ° i
] [A] is given by
b, - 1
B3 2w L.
12 “p2 %3 7 | P2l P2 3
p p P (6 13)
1 1 1" I

. 3 1
[XJ - --Ip—z- Wpy U3 -p——-z-LI ? Wh1 Ypa T-F;-z-wpl Wh3
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Since the matrix [A]is singular, there is some linear combinatior of the

moment ot inertia states that is nonobservable.

To improve the filter

stability, it is desirable to choose a different basis in which one of

the states 1s explicitly nonobservable.
choices for such a basis, the one that was chosen is the following:

While there are many possible

where the subscript m indicates that the state vector has been modified,
The new sensitivity [Am] becomes

[An] =

[ 4= 1.

23 pe (
-—T"Jl sz M)

ot

I [{V] pl [{V) p3

pe

]

pl

'Ip3 (l.)pl wp2

Pl

|
K]
= W, 0
ftl wpg mpj
|
ipz-mp]mpa )
I -~ l "
"'p‘l 'p"":‘ w W, 0
Ip3 1 ™p

(G-14)
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[t i{s apparent from equation (G-14) that 51m3 is nonobservable, This is

& . not surprising since a change in the value of’61m3 (51ml and 61m2 remain-

ﬁ ! ing constant) corresponds to the same proportional change in each of Glpl. ﬂ
% L 61p2. and Glpa. Since Euler's equation does not depend on the total magni-

o tude of the moment of inertia but only on the relative sizes of the indi-

g. vidual components, the state 6Im3 does not affect body dynamics and 1s _
g ! thus nonobservable. ;
3
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G-3. Computer Organization

A flow diagram indicating the computer programs used in free-flight fil- .
tering is shown Figure G-2. The free-flight simulation program FFSIM ﬂ
uses quaternions to calculate the body attitude as a function of time.

To calculate the vehicle position and velocity, FFSIM employs a spherical
harmonic expansion of the earth's gravitational field. The body dynamics
program BODYN uses the error equations of Section G-2 to calculate the
body dynamics measurement matrices as a function of time, while the 1inear
error analysis program LEAP uses the DINS error model of Section 3.2.3.1 ?_
to calculate the DINS transition and measurement matrices as a function ;
of time. The system error analysis program SEAP incorporates the LEAP
and BODYN outputs into a Kaiman filter to obtain several measures of the
system performance, including inflight alignment performance and inflight
calibration performance of the DINS and body dynamics error sources.
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